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Abstract The objective of this study is to develop a micromechanics-based viscoelastic damage model that
can predict the overall viscoelastic behavior of particle-reinforced polymeric composites undergoing damage.
The emphasis here is that the present model successfully combines a rate-dependent viscoelastic constitutive
model and a damage model. The Laplace transform based on the Boltzmann superposition principle and the
ensemble-volume averaged method suggested by Ju and Chen (Acta Mech 103:103–121, 1994a; Acta Mech
103:123–144, 1994b) are extended toward effective viscoelastic properties. Further, the probability of the
distribution function of Weibull (J Appl Mech 18:293–297, 1951) is adopted to describe a damage model
that is dependent on damage parameters. A series of numerical simulations including parametric studies, and
experimental comparisons are carried out to give insight into the potential capacity of the present microme-
chanics-based viscoelastic damage framework.

1 Introduction

Particle-reinforced polymeric composites have been widely used in many engineering applications due to their
potential to provide desirable mechanical properties such as high modulus and high strength or toughness
[1,2]. The particle-reinforced polymeric composites consist of randomly dispersed elastic particles embedded
in an inelastic matrix that is known to degrade with time and under mechanical, thermal, and environmental
loads [3]. These types of composites generally exhibit nonlinear constitutive response due to various factors.
In particular, the rate-dependent behavior of these composites and the mechanical degradation due to the
existence of damage in the composites can play a significant role in the nonlinear constitutive response [4–8].

It is known that the rate-dependent nature of particle-reinforced polymeric composites can be mainly
explained by the viscoelastic theory [9,10]. In the viscoelastic theory, the viscoelastic phenomenon can be
described as several simple physical models that include various configurations of the spring element, which
stands for the elastic characteristic, and the dashpot element, which depicts the viscous characteristic [11,12].
The typical models among the simple physical models are the Maxwell and Voigt models [11,12]. The Max-
well model consists of the spring and the dashpot in series, and the Voigt model consists of them in parallel
[11–13]. Each model has a limitation as the Maxwell model cannot predict creep accurately, while the Voigt
model is much less accurate with regard to relaxation [13]. In particular, polymeric composites have strong
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viscoelastic characteristics compared to conventional material [14]. In the case of these polymeric composites,
the Maxwell model is widely used because it predicts that the stress decays exponentially with time, which is
accurate for most polymers [13].

Micromechanical methods can estimate the overall performance of composites from individual unique
properties of the material. In addition, the methods have an advantage in that an a priori assumption is not
needed for the establishment of the composite response [15]. The micromechanical methods have been exten-
sively developed for predicting the mechanical behavior of particle-reinforced composites, and in particular,
micromechanics-based viscoelastic modeling can also be found in several studies. Li and Weng [16] extended
the Mori-Tanaka method toward viscoelastic material to find its properties. They focused on the influence of
inclusion shape and examined cases with an elastic inclusion and viscoelastic matrix under constant strain
rate and cyclic uniform strain. Lévesque et al. [17] also used the Mori-Tanaka method to predict a linearly
homogenized scheme of particulate composites. It was assumed in Lévesque et al. [17] that the particle is a
linear elastic one and only resin has a viscoelastic property. In particular, in Lévesque et al. [17], Schapery’s
nonlinear viscoelastic model [18] was incorporated into the matrix system for modeling the effective visco-
elastic behavior of particulate composites. Muliana and Kim [19] proposed a micromechanical model using a
unit-cell micromodel. In Muliana and Kim [19], the micromechanical method to find stiffness and compliances
of a unit-cell was defined by following Haj-Ali and Pecknold’s model [20], while stress–strain relations of
each subcell were expressed in terms of phase average concentration factors, which were developed by Hill
[21]. In addition, the time-integration for considering the viscoelastic property in a matrix was performed for
nonlinear analyses in Muliana and Kim [19]. Kurnatowski and Matzenmiller [22] introduced a micromechan-
ical model named as generalized method of cells (GMC) to provide the homogenized constitutive tensor of
composites. The macroscale of the problem was solved by the finite element method, while the microscale
behavior was analyzed by the GMC to predict viscoelastic matrix/elastic particle composites in Kurnatowski
and Matzenmiller [22].

The objective of this study is to develop a micromechanics-based viscoelastic damage model that can pre-
dict the overall viscoelastic behavior of particle-reinforced polymeric composites undergoing damage. Damage
in materials is due to many reasons and leads to a decrease in stiffness and a reduction in strength. Hence,
the progressive evolution of damage in materials causes overall nonlinear behavior so that it must be con-
sidered to predict realistic response in applications. The emphasis here is that the present model successfully
combines a rate-dependent viscoelastic constitutive model and a damage model. The Laplace transform based
on the Boltzmann superposition principle and the ensemble-volume averaged method suggested by Ju and
Chen [23,24] are extended toward effective viscoelastic properties. Further, the probability of the distribution
function of Weibull [25] is adopted to describe a damage model that is dependent on damage parameters.
Numerical simulations including parametric studies and experimental comparisons of the developed model
are carried out to give insight into the potential capacity of the present micromechanics-based viscoelastic
damage framework.

2 Effective viscoelastic moduli of particle-reinforced polymeric composites considering damage

2.1 Recapitulation of the Boltzmann superposition principle

The Boltzmann superposition principle is well accepted as the simplest and more powerful approach among a
variety of possible approaches for expressing viscoelastic behavior [26–28]. In the Boltzmann superposition
principle, the strain history is described as a function of the rate of the loading history, and the total deformation
is the sum of each step of independent contribution [28]. According to the Boltzmann superposition principle,
the stress–strain relationship for a viscoelastic material can be expressed as [11,29]

σi j (t) =
t∫

−∞
C∗

i jkl(t − τ)
dεkl(τ )

dτ
dτ (1)

where t and τ denote the arbitrary time and the time under instantaneous application of σi j (t), respectively.
In addition, the fourth-rank tensor C∗

i jkl denotes the effective relaxation modulus which becomes zero assum-
ing that the material is unstressed and unreformed in the range −∞ ≤ t ≤ 0 [29]. In order to make use of the
Boltzmann superposition principle, the Laplace transform of a function f (t) is used in the present study as
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L[ f (t)] =
t∫

0

f (t)e−st dt (2)

where L[ f (t)] is the Laplace transform of function f (t) and s is the Laplace parameter. Taking the Laplace
transform of Eq. (1) yields [11]

σ̃i j (s) = sC̃∗
i jkl(s)ε̃kl(s) (3)

in which a tilde (∼) signifies the transform domain (TD). The Laplace-transformed Eq. (3) is now an analogous
form of stress–strain relations. This is the basis of the correspondence principle of estimating the behavior of a
material, and viscoelastic problems can be solved by combining the respective solution of the elastic problem
and the integral Laplace transform domain [30,31]. Details of the Boltzmann superposition principle and the
Laplace transform can be found in Gibson [11], Lakes [12], and McCrum et al. [13].

2.2 Micromechanics-based constitutive equations for the viscoelastic behavior of particle-reinforced
polymeric composites

We consider here particle-reinforced polymeric composites made up with a viscoelastic matrix (phase 0) and
randomly dispersed spherical elastic particles (phase 1) embedded in the matrix. It is assumed that all of the
particles are perfectly bonded in the initial state, but some of the particles are damaged by increasing loading
or deformation on the composites, and those particles could be then separately regarded as damaged parti-
cles (completely debonded particles, phase 2) that may lose their load-carrying capacity. The effective elastic
constitutive equation of the particle-reinforced composites has been studied by many researchers [32–38]. In
particular, following the ensemble-averaged volume method proposed by Ju and Chen [23,24], the effective
elastic tensor C∗ of the three-phase composites can be given by

C∗ = C0

[
I +

2∑
r=1

{
φr
[
(Cr − C0)

−1 · C0 + S
]−1 ·

[
I − φr S · {(Cr − C0)

−1 · C0 + S
}−1

]−1
}]

= λ∗δi jδkl + μ∗(δikδ jl + δilδ jk) (4)

where φr denotes the volume fraction of the r -phase, Cr is the stiffness tensor for the r -phase, S signifies
the Eshelby’s tensor for a spherical inclusion [39], and δ is Kronecker delta. In addition, λ∗ and μ∗ are the
effective Lamé constants and can be expressed as [35–38]

λ∗ = κ0

{
1 +

2∑
r=1

30(1 − ν0)φr

3αr + 2βr − 10(1 + ν0)φr

}
− 2

3
μ0

{
1 +

2∑
r=1

15(1 − ν0)φr

βr − 2(4 − 5ν0)φr

}
, (5)

μ∗ = μ0

{
1 +

2∑
r=1

15(1 − ν0)φr

βr − 2(4 − 5ν0)φr

}
, (6)

with

α1 = 2(5ν0 − 1) + 10(1 − ν0)

(
κ0

κ1 − κ0
− μ0

μ1 − μ0

)
, α2 = 2(5ν0 − 1), (7)

β1 = 2(4 − 5ν0) + 15(1 − ν0)

(
μ0

μ1 − μ0

)
, β2 = −7 + 5ν0 (8)

in which κ0, μ0, and ν0 are bulk modulus, shear modulus, and Poisson’s ratio of the matrix, respectively.
Details of the effective elastic constitutive equations can be found in Ju and Chen [23,24], Ju and Lee [40,41],
and Liu et al. [42].

In order to derive the effective viscoelastic constitutive equations of particle-reinforced polymeric compos-
ites, two assumptions are made in the present study as [16,43]: (a) the particle-reinforced polymeric composites
consist of elastic particles and a viscoelastic matrix, and (b) the matrix is viscoelastic in shear and dilatation.
According to Hashin [43], the effective viscoelastic modulus can be derived by replacing the elastic phase
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by a time-domain phase. That is, the effective viscoelastic constitutive equations in the Laplace-transformed
domain can be obtained as

λTD∗ = κTD
0

{
1 +

2∑
r=1

30
(
1 − νTD

0

)
φr

3αTD
r + 2βTD

r − 10
(
1 + νTD

0

)
φr

}

−2

3
μTD

0

{
1 +

2∑
r=1

15
(
1 − νTD

0

)
φr

βTD
r − 2

(
4 − 5νTD

0

)
φr

}
, (9)

μTD∗ = μTD
0

{
1 +

2∑
r=1

15
(
1 − νTD

0

)
φr

βTD
r − 2

(
4 − 5νTD

0

)
φr

}
(10)

with

αTD
r = 2

(
5νTD

0 − 1
)+ 10

(
1 − νTD

0

) ( κTD
0

κr − κTD
0

− μTD
0

μr − μTD
0

)
, (11)

βTD
r = 2

(
4 − 5νTD

0

)+ 15
(
1 − νTD

0

) ( μTD
0

μr − μTD
0

)
, (12)

where the Laplace-transformed bulk modulus κTD
0 and shear modulus μTD

0 of the viscoelastic matrix are defined
based on the Maxwell model [43–45] as

κTD
0 = η0κ0s

μ0 + sη0
, μTD

0 = η0μ0s

μ0 + sη0
, (13)

in which η0 is the shear viscosity of the matrix. The Laplace-transformed Poisson’s ratio νTD
0 can be obtained

through the following relation:

νTD
0 = 3κTD

0 − 2μTD
0

6κTD
0 + 2μTD

0

. (14)

The effective viscoelasticity tensor of the particle-reinforced polymeric composites can be described by
taking the inverse Laplace transform as

C∗(t) = λ∗(t)δi jδkl + μ∗(t)(δikδ jl + δilδ jk) (15)

with

λ∗(t) = η0κ0

tμ0

⎧⎨
⎩

7(ν0 − 1)2φ1

4
+ 5

13
+

exp
(−μ0t

η0

)
6

23

⎫⎬
⎭

−2

3

η0

2t

⎡
⎣ξ4(ν0 − 1)2φ1

ξ1ξ3
+ ξ5 + ξ8

ξ2ξ3
+

2ξ7exp
(−μ0t

η0

)

ξ1ξ2

⎤
⎦ , (16)

μ∗(t) = η0

2t

⎡
⎣ξ4(ν0 − 1)2φ1

ξ1ξ3
+ ξ5 + ξ8

ξ2ξ3
+

2ξ7exp
(−μ0t

η0

)

ξ1ξ2

⎤
⎦ (17)
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where the parameters i (i = 1, . . . , 7), and ξi (i = 1, . . . , 8) can be expressed as

1 = ν0(1 + φ1) − φ1 + 1, 2 = ν0(4 + φ1) − φ1 − 2, (18)

3 = ν0(4 + φ2) − φ2 − 2, 4 = {φ1(ν0 − 1) + ν0 + 1} {ν0(4 + φ1) − φ1 − 2} , (19)

5 = − ν2
0 {φ1(5φ2 + 8) + 2(φ2 − 2)} + 2ν0 {φ1(5φ2 + 6) + 1}

− φ1(5φ2 + 4) + 2(φ2 − 1), (20)

6 = φ2 {ν0(5φ1 + 8) − 5φ1 − 4} (ν0 − 1) + 4 {ν0(φ1 − 2) − φ1 + 1} (2ν0 − 1), (21)

7 = 9exp

(
tκ1μ01

η0(κ02 − κ11)

)
, (22)

ξ1 = 5ν0(1 + 2φ1) − 7 − 8φ1, ξ2 = 5ν0(1 + 2φ2) − 7 − 8φ2, (23)

ξ3 = (5ν0 − 4)(φ1 − 1), ξ4 = 225exp

{
2tμ0μ1ξ3

η0(−2μ1ξ3 + μ0ξ1)

}
, (24)

ξ5 = 56(φ2 − 1) − φ1(49 + 176φ2) − 25ν2
0 {φ1 + 2φ2(4φ1 − 1) + 2} , (25)

ξ6 = 5ν0 [(5ν0 − 14)(φ1 − 1) + φ2 {5ν0(8φ1 + 1) − 2(38φ1 + 7)}] , (26)

ξ7 = φ1(176φ2 + 49) + 49(φ2 − 1) + ξ6, ξ8 = 10ν0 {7φ1 + φ2(38φ1 − 11) + 11} . (27)

2.3 Damage model

The probability of damage in particle-reinforced polymeric composites is modeled as a two-parameter Wei-
bull process [40,46–49]. The damage model can be described as a change of the volume fraction of damaged
particle φ2 at a level of uniaxial tensile loading as [50–55]

φ2 = φPd (σ̄11)1 = φ

{
1 − exp

[
−
(

(σ̄11)1

S0

)M
]}

(28)

where φ is the original particle volume fraction, and S0 and M are the Weibull damage parameters. The internal
stress σ̄ 1 of particles can be obtained as [40]

σ̄ 1 = C1 : [I − S · (A1 + S)−1] ·
[

I −
2∑

r=1

φr S · (Ar + S)−1

]−1

: ε̄ ≡ U : ε̄ (29)

where Ar = (Cr − C0)
−1 · C0, and details of the internal stress σ̄ 1 of particles can be found in Eqs. (69)–(71)

of [40].
The component of the positive-definite fourth-rank tensor U is given by

Ui jkl = U1δi jδkl + U2(δikδ jl + δilδ jk) (30)

where the coefficients U1 and U2 are given by [40]

U1 = 3(3χ1 + 2χ2)ϕ2κ1 − 2(3ϕ1 + 2ϕ2)χ2μ1

3ϕ2(3χ1 + ϕ2)
, U2 = χ2μ1

ϕ2
(31)

with

χ1 = −2

[−(4α1 + β1) + 5ν0(α1 + β1)

β1(3α1 + 2β1)

]
, χ2 = −2

[
4 − 5ν0

2β1
− 1

4

]
, (32)

ϕ1 =
2∑

r=1

[
−2φr

{−(4αr + βr ) + 5ν0(αr + βr )

βr (3αr + 2βr )

}]
, (33)

ϕ2 =
2∑

r=1

[
−2φr

{
4 − 5ν0

2βr
− 1

8φr

}]
. (34)
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Details of the damage model can be found in Lee and Pyo [56,57], Kim and Lee [37], and Lee et al. [58].
The Boltzmann superposition principle is also applied to the damage model. The elastic phase of the

fourth-rank tensor U is, therefore, replaced with the Laplace-transformed domain as

U TD
1 = 3

(
3χTD

1 + 2χTD
2

)
ϕTD

2 κ1 − 2
(
3ϕTD

1 + 2ϕTD
2

)
χTD

2 μ1

3ϕTD
2

(
3χTD

1 + ϕTD
2

) , U TD
2 = χTD

2 μ1

ϕTD
2

(35)

with

χTD
1 = −2

[
− (4αTD

1 + βTD
1

)+ 5νTD
0

(
αTD

1 + βTD
1

)
βTD

1

(
3αTD

1 + 2βTD
1

)
]

, χTD
2 = −2

[
4 − 5νTD

0

2βTD
1

− 1

4

]
, (36)

ϕTD
1 =

2∑
r=1

[
−2φr

{
− (4αTD

r + βTD
r

)+ 5νTD
0

(
αTD

r + βTD
r

)
βTD

r

(
3αTD

r + 2βTD
r

)
}]

, (37)

ϕTD
2 =

2∑
r=1

[
−2φr

{
4 − 5νTD

0

2βTD
r

− 1

8φr

}]
. (38)

Following the aforementioned procedure, the inverse Laplace transform reads

U(t) = U1(t)δi jδkl + U2(t)(δikδ jl + δilδ jk) (39)

with

U1(t) = (−1 + ν0)

4t

[
η0 J3 J5

μ3
0 {7 + ν0(−19 + 10ν0)}2 − η0 J2κ0�3

μ0(1 − 2ν0)2 − J4 + J6

]
, (40)

U2(t) = 3μ2
0(−1 + ν0)

2t�2
2�2

5

[
− 10η0 J5�1�

2
2 + J1

{
η0�1�

2
2 − 30tμ0μ1φ1�5(4 + �6)

} ]
, (41)

in which

�1 = 3

2
[5ν0 {2(φ1 + φ2) + 1} − 8(φ1 + φ2) − 7] , (42)

�2 = 3

2
[μ0(5ν0 − 7) + 2μ1(5ν0 − 4)] , (43)

�3 = ν0(φ1 + φ2 − 4) + φ1 + φ2 + 2, �4 = κ0(2 − 4ν0) + κ1(1 + ν0), (44)

�5 = μ0(7 − 5ν0), �6 = ν0(5ν0 − 9), (45)

J1 = 10exp

{
2tμ0μ1(4 − 5ν0)

η0�2

}
, J2 = 3exp

{−tκ1μ0(1 + ν0)

η0�4

}
, (46)

J3 = 40μ3
0�1(1 − 2ν0)

2 + 3κ0�3�
2
5 , J4 = 12t J1μ

3
0μ1(4 + �6)φ1

�2
2�5

, (47)

J5 = exp

(−tμ0

η0

)
, J6 = 6t J2κ

2
0 κ1(−1 + ν2

0 )φ1

(−1 + 2ν0)�
2
4

− 4η0 J1μ
2
0�1

�2
5

. (48)

3 Numerical simulations

A series of parametric studies is conducted to examine the influence of the strain rate ε̇ and damage param-
eters S0 and M on the viscoelastic behavior of particle-reinforced polymeric composites. Numerical uniaxial
tensile tests on vinyl-ester matrix/glass bead particle composites are carried out for the parametric studies. The
material properties used in these tests are E0 = 3.5 GPa, ν0 = 0.35, and η0 = 180 GPa · s for the matrix and
E1 = 70 GPa and ν1 = 0.25 for the particles, respectively [59]. Various strain rates are considered to show the
strain rate sensitivity to the viscoelastic stress–strain response of particle-reinforced polymeric composites.
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Fig. 1 The predicted normalized shear (a) and bulk (b) modulus of particle-reinforced polymeric composites with various strain
rates and volume fractions of particles

Figure 1 shows the predictions of normalized shear and bulk modulus of particle-reinforced polymeric com-
posites with various strain rates and volume fractions of particles. It is noted that as the strain rate ε̇ continues
to increase, the predicted normalized shear and bulk moduli tend to increase, eventually reaching the purely
elastic state.

The strain rate effect is clearly seen, and normalized shear and bulk moduli are closer to the elastic case with
the increase in strain rate in the figure. In particular, the difference between the elastic and viscoelastic cases
is getting more pronounced as the strain rate decreased, indicating that the strain rate significantly affects the
viscoelastic properties of particle-reinforced polymeric composites. The viscoelastic stress–strain responses
of the particle-reinforced polymeric composites with the volume fraction φ1 = 5 % corresponding to Fig. 1
are shown in Fig. 2. It is observed from the figure that the stress–strain curves become stiffer as the strain rate
continues to increase.
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Fig. 2 The viscoelastic stress–strain responses of the particle-reinforced polymeric composites with the volume fraction φ = 5 %

An additional parametric study is carried out to investigate the influence of the damage parameters S0 and
M on the overall viscoelastic damage behavior of particle-reinforced polymeric composites. The predicted
stress–strain curves with various damage parameters (S0, M) and the corresponding damage evolutions are
shown in Figs. 3 and 4. It is seen from the figures that the damage parameter S0 has a significant influence on
the overall damage evolution compared to the damage parameter M . It is also seen that particles evolve more
rapidly to damaged particles as the M value increases and the S0 value decreases.

In addition, biaxial and hydrostatic numerical tensile tests to examine the viscoelastic stress–strain responses
of the composites under different loading conditions are performed. Figures 5 and 6 show the present pre-
dicted stress–strain responses of particle-reinforced polymeric composites under biaxial and hydrostatic load-
ings, respectively. Similar to the aforementioned uniaxial tensile test, a lower S0 leads to a faster evolution of
damage in particle-reinforced polymeric composites.

4 Experimental comparisons

Comparisons between the present predictions and available experimental data are made to assess the predictive
capability of the proposed micromechanics-based viscoelastic damage model. Firstly, a comparison between
the proposed micromechanics-based viscoelastic damage model and experimental data reported by Meddad
and Fisa [60] is made for validation of the proposed model. Meddad and Fisa [60] conducted experiments on
glass bead particulate polystyrene composites with different volume fractions (φ1 = 10, 20, 40 %). We adopt
the same material properties as those in Meddad and Fisa [60]: E0 = 3.3 GPa, ν0 = 0.34, and η0 = 70 GPa · s
for the matrix; E1 = 70 GPa and ν1 = 0.25 for particles, respectively. In addition, the damage parameters are
chosen to be: S0 = 50 MPa and M = 2. The strain rate is assumed to be ε̇ = 0.00006/s.

Note that the damage parameters and strain rate are fitted at φ1 = 20 %, and then the same values are applied
to different volume fraction cases (φ1 = 10, 40 %). Figure 7 shows the comparison of predicted stress–strain
curves between the proposed micromechanics-based viscoelastic damage model and the experimental data
[60] of glass bead particulate composites with various particle volume fractions. The predicted stress–strain
curves obtained from the proposed micromechanics-based viscoelastic damage model are shown to have a good
correlation with those of the experimental results [60]. Good agreements between the present predictions and
results from the experimental data [60] show the predictive capability of the proposed micromechanics-based
viscoelastic damage model.
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Fig. 3 The predicted stress–strain curves of particle-reinforced polymeric composites with various S0 values (a) and M values (b)

Another comparison between the present predictions and available experimental data is made to assess the
predictive capability of the proposed micromechanics-based viscoelastic damage model. Cho et al. [59] con-
ducted experiments to characterize the viscoelastic behaviors of alumina (Al2O3)-reinforced vinyl-ester matrix
composites and glass bead reinforced vinyl-ester matrix composites. In the present study, the experimental
data reported by Cho et al. [59] are compared with the present predictions.

Following Cho et al. [59], the material properties of alumina-reinforced vinyl-ester matrix composites are
assumed to be E0 = 3.5 GPa, ν0 = 0.35, and η0 = 180 GPa · s for the vinyl-ester matrix; and E1 = 145 GPa,
ν1 = 0.22, and φ1 = 3 % for the alumina particles, respectively. Based on the parametric studies in Section
3, the strain rate and the damage parameters are selected as: ε̇ = 0.00008/s, S0 = 105 MPa, and M = 1 in
this simulation. In addition, the material properties of glass bead reinforced vinyl-ester matrix composites are
given as [59]: E0 = 3.5 GPa, ν0 = 0.35, and η0 = 180 GPa · s for the vinyl-ester matrix; and E1 = 70 GPa,
ν1 = 0.25, and φ1 = 5 % for the glass bead particles, respectively. The strain rate and damage parameters are
assumed to be ε̇ = 0.00009/s, S0 = 50 MPa, and M = 1.

Figures 8 and 9 show the comparisons between the present predictions with and without the damage
mechanism and experimental data [59] for alumina-reinforced vinyl-ester matrix composites and glass bead
reinforced vinyl-ester matrix composites, respectively. It is observed from the figures that the predictions
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Fig. 4 The damage evolution curves corresponding to the predicted stress–strain curve

considering the damage mechanism are lower than those without considering the damage mechanism. In addi-
tion, a higher particle volume fraction leads to a larger difference between the predictions with and without the
damage mechanism. The predicted viscoelastic stress–strain responses of the particle-reinforced polymeric
composites are shown to be in good agreement with the experimental data. The predicted damage evolution
curves corresponding to Figs. 8 and 9 are depicted in Fig. 10.

5 Concluding remarks

A micromechanics-based viscoelastic damage model for particle-reinforced polymeric composites has been
presented to predict the overall stress–strain response and damage evolution in the material. The Laplace-
transformed Boltzmann superposition principle is applied to a micromechanical framework derived by the
ensemble-averaged method [23,24]. A damage model is considered in accordance with Weibull’s probabilis-
tic function to characterize the varying probability of particle debonding. A series of numerical simulations
including parametric studies, and experimental comparisons are carried out to give insight into the potential



Micromechanics-based viscoelastic damage model 1317

Fig. 5 The present predicted stress–strain response of particle-reinforced polymeric composites under biaxial loading with various
S0 values

Fig. 6 The present predicted stress–strain response of particle-reinforced polymeric composites under hydrostatic loading with
various S0 values

capacity of the present micromechanics-based viscoelastic damage framework. The findings of the present
study can be summarized as follows.

(i) The viscous property in the composites is more pronounced with the decrease in strain rate and is clearly
shown in uniaxial, biaxial, and hydrostatic loading conditions.

(ii) The effect of the strain rate on the viscoelastic behavior is shown to be influential, and the influences of
the damage parameters are quite remarkable.
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Fig. 7 The comparison of predicted stress–strain curves of glass bead particulate polystyrene composites with various particle
volume fractions (φ = 10, 20, 40 %) between the proposed micromechanics-based viscoelastic model and experimental data
[60]

Fig. 8 The comparison between the present prediction and experimental data [59] for uniaxial tensile responses of an alumina
(Al2O3) particle-reinforced vinyl-ester matrix composite

(iii) Good agreements between the present predictions and experimental data show the predictive capability
of the proposed model.

This study has demonstrated the capability of the proposed micromechanical framework for predicting
the viscoelastic behavior of particle-reinforced polymeric composites. However, a unified experimental and
numerical study needs to be carried out for the calibration of the model parameters of the proposed model.



Micromechanics-based viscoelastic damage model 1319

Fig. 9 The comparison between the present prediction and experimental data [59] for uniaxial tensile responses of glass bead
particle-reinforced vinyl-ester matrix composites

Fig. 10 The predicted damage evolution as a function of strain of particle-reinforced polymeric composite: corresponding to
Figs. 8 and 9: a alumina particle-reinforced vinyl-ester matrix composite and b glass bead particle-reinforced vinyl-ester matrix
composite
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