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A viscoelastic damage model for aligned and 3D randomly oriented discontinuous fiber-reinforced poly-
meric composites is proposed. The model, which predicts the effective viscoelastic stress–strain behavior
of the composites, is based on a combination of the Laplace-transformed superposition principle and the
ensemble-averaged micromechanics. The Weibull’s damage function is incorporated into the model for
the modeling of the evolution of damaged fibers. An inverse analysis based on experimental data is
adopted to simulate the strain rate sensitivity of the model. A series of numerical simulations based
on the proposed model are performed to examine the influence of damage parameters, fiber orientations,
strain rates, and the aspect ratio of discontinuous fibers on the behavior of the composites. In addition,
experimental comparisons are made to illustrate and assess the predictive capability of the proposed
model.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The damage and strain rate sensitivity of viscoelastic compos-
ites are fundamental issues for the safe application of the compos-
ites [41]. Although constitutive relations of fiber-reinforced
polymeric composites have been widely studied, few studies have
dealt with viscoelastic characteristics of polymeric composites and
damage-based predictions [48,43]. In particular, the rate-depen-
dent nature of polymeric composites is a significant factor in the
development of a viscoelastic model since it significantly affects
the behavior of the polymer matrix [37]. The overall behavior of
discontinuous fiber-reinforced composites is also affected in a sig-
nificant and practical manner by the damage phenomenon, aspect
ratio and arrangement of the reinforcing fibers [46,26,53] and
therefore these factors must be considered in the prediction of
the composites.

Polymer matrix composites are viscoelastic solids simulta-
neously having elastic and viscosity properties [4]. To identify
the viscoelastic phenomenon, researchers have developed several
simple physical models, such as the Maxwell model, the Kelvin-
Voight model, and the Standard Linear Solid model. The enumer-
ated models comprise spring and damper elements, which signify
the elastic and viscosity properties, respectively [11]. The models
have been used in several simulations designed to predict the
ll rights reserved.
behavior of viscoelastic material [1,50]. Furthermore, advanced
methods with additional considerations have also been developed
to identify characteristics of the viscoelastic mechanism, particu-
larly the thermodynamics-based process [45] and the finite-strain
viscoelastic model [47].

A homogenization process is essential for polymeric composites
that contain aligned or randomly oriented discontinuous fibers
since the matrix and discontinuous fibers have different material
characteristics [35]. A micromechanical method can be used to
describe the overall mechanical behavior of composites in terms
of a homogenized material, and this approach has been used to
model heterogeneous composites in numerous studies (e.g.,
[18,19,21,33,29,23]. Several groups have used micromechanics-
based viscoelastic modeling. For instance, [37] considered how
the viscoelastic property affects the overall behavior of compos-
ites; and they used a generalized method of cells in which Laplace
transformation of time-dependent material functions are coupled
with a numerical time integration scheme. To determine the
viscoelastic response of fiber-reinforced polymeric composites,
[35] relied on a cylinder assemblage [17] and a generalized
self-consistent scheme [3]. Refs. [15,16] also proposed a microme-
chanical model that analyzes the viscoelastic behavior with an
imperfect interfacial condition for particulate and fiber-reinforced
composites. Ref. [5] proposed a model based on the shear lag meth-
od [12] to predict the behavior of rubber matrix composites having
randomly distributed short fibers. [2] developed an analytical
model based on micromechanics to characterize loss tangents
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and the stiffness of the layers of fiber-reinforced composites. For a
finite element simulation, [8] applied a nonlinear viscoelastic con-
stitutive relation to calculate the time effects on a fiber cross-ply
laminate. Ref. [44] proposed a finite element model based on the
elastic–viscoelastic correspondence principle; they considered a
square-packed array of fibers in unidirectional lamina composites.
Ref. [6] used finite element modeling based on a numerical model
to determine the effective damping characteristics of the viscoelas-
tic response.

This study proposes an effective micromechanics-based visco-
elastic damage model for polymeric composites containing aligned
and 3D randomly oriented discontinuous fibers. The rate-depen-
dent nature of the polymer matrix (phase 0) causes a viscoelastic
response in composites; thus, the Boltzmann superposition princi-
ple [11,14] is coupled with an ensemble volume averaged method
based on a micromechanical homogenization process [18,19]. An
averaging process of fibers over 3D randomly orientations
[30,31,48] is carried out in order to obtain the constitutive rela-
tions of randomly oriented discontinuous fiber-reinforced compos-
ites. Damage phenomena induced by interfacial debonding also
have a remarkable influence on the overall behavior of composites.
The perfectly bonded discontinuous fibers (phase 1) may be dam-
aged as deformations increase, and these fibers are assumed to be
completely debonded fibers which can be separately regarded as
damaged fibers (phase 2). Accordingly, the Weibull statistics func-
tion [52,20,32,27], which is expressed as the current volume frac-
tion of damaged fibers, is applied to the proposed model. In
addition, the strain rate sensitivity is taken into account by carry-
ing out an inverse analysis based on experimental data [13,7].
Numerical simulations are carried out to investigate how strain
rate, fiber arrangement, damage parameters, and aspect ratio of
discontinuous fibers affect the behavior of polymeric composites.
Moreover, the predictions based on the proposed model and exper-
imental data on aligned and 3D randomly oriented discontinuous
fiber-reinforced polymeric composites [10,39] are compared for
the purpose of assessing the potential of the present framework.

2. Effective viscoelastic/damage behavior of discontinuous
fiber-reinforced polymeric composites

2.1. Effective elastic damage model for aligned fiber-reinforcement
composites

The volume fraction of damaged fibers /2 at the level of the uni-
axial tensile loading can be expressed as [49,54–56,20,21,25]

/2 ¼ /Pdð�r1Þ ¼ / 1� exp �
�r1

S0

� �M
" #( )

ð1Þ

where / is the original fiber volume fraction, S0 and M are damage
parameters, and the internal stress of fibers (phase 1), denoted by
�r1, can be obtained as [20,21,30,28]

�r1 ¼ C1 : ½I� S � ðA1 þ SÞ�1� � I�
X2

r¼1

/rS � ðAr þ SÞ�1

" #�1

: �� � U : �� ð2Þ
with

Ar � ðCr � C0Þ�1 � C0 ð3Þ
where Cr denotes the elasticity tensor of the r-phase and /r is the
volume fraction of the r-phase, I is the fourth-rank identity tensor
and S signifies the Eshelby’s tensor [9] for a spheroidal inclusion
[22]. The components of the positive defined fourth-rank tensor U
are explicitly written as

Uijkl ¼ Uð1ÞIK dijdkl þ Uð2ÞIJ ðdikdjl þ dildjkÞ ð4Þ
where the components of the second-rank tensor Uð1ÞIK and Uð2ÞIJ are
given by (cf. 43]
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with

Pð1ÞIK ¼ � Lð1ÞIK þ Lð3ÞIK

� �
Pð2ÞIJ ¼ � Lð2ÞIJ þ Lð4ÞIJ

� �
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where kr and lr (r = 0,1) are Lame constants of rth-phase, and the
second-rank tensor Lð1ÞIK ; Lð2ÞIJ ; Lð3ÞIK , and Lð4ÞIJ are given in the Appendix
A.

The effective elasticity tensor C⁄ for discontinuous fiber-rein-
forced composites can be derived by using the ensemble-averaged
volume method as [18,19]

C� ¼ C0 Iþ
X2

r¼1

/rðAr þ SÞ�1 � ½I� /rS � ðAr þ SÞ�1��1
n o" #

¼ Cð1ÞIK dijdkl þ Cð2ÞIJ ðdikdjl þ dildjkÞ ð11Þ
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Cð1ÞIK ¼ 2ðl0w
ð1Þ
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KK Þ þ

X2

n¼1

k0w
ð1Þ
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IJ ð12Þ

with

wð1ÞIK ¼ Cð1ÞIK þ Cð3ÞIK ; wð2ÞIJ ¼
1
2
þ Cð2ÞIJ þ Cð4ÞIJ ð13Þ

where the parameters Cð1ÞIK ; Cð2ÞIJ ; Cð3ÞIK and Cð4ÞIJ are listed in the
Appendix B (cf. 48,43].

2.2. Effective viscoelastic damage model for aligned fiber-reinforced
polymeric composites

Viscoelastic materials such as polymers cannot be directly
characterized using the conventional elastic analysis employed to
obtain the properties of elastic solids [24]. Alternatively, the
Boltzmann superposition principle can be conveniently applied
to explicitly consider the viscous nature of a polymer [14]. Based
on the principle of superposition, the stress response according
to the strain–time history can be expressed as [11]

rðtÞ ¼
Xn

i¼1

M�iCðt � siÞ ð14Þ
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where t and si signify the arbitrary time and the time under instan-
taneous application of D�i, respectively, and C(t) is the relaxation
modulus, which becomes zero for �1 6 t 6 0 [11]. In order to make
use of the principle of superposition, let us take the Laplace trans-
form (LT) of Eq. (14) as [14,34,24]

~rijðsÞ ¼ seCijklðsÞ~�klðsÞ ð15Þ

where the tilde (�) signifies the transformed domain (TD) and s is
the Laplace constant. By taking LT of Eq. (14), the viscoelastic
moduli can be applied into a micromechanical model [14,34,35].
Details of the Laplace-transformed superposition principle among
elastic, viscoelastic, and LT of the composite can be found in
[14,34,24].

The effective viscoelastic moduli can be derived by replacing
the elastic phase with the viscoelastic phase [14,34,35]. The consti-
tutive equation in TD form [C⁄]TD can be written as

½C��TD ¼ Cð1ÞIK

h iTD
dijdkl þ Cð2ÞIJ

h iTD
ðdikdjl þ dildjkÞ ð16Þ

where the second-rank tensor in TD form Cð1ÞIK

h iTD
and Cð2ÞIJ

h iTD
can be

derived by replacing the elastic phase with the LT phase as (cf.
48,43]
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where the second-rank tensors Cð1ÞIK

h iTD
; Cð2ÞIJ

h iTD
; Cð3ÞIK

h iTD
and

Cð4ÞIJ

h iTD
are listed in the Appendix C. In addition, kTD

0 and lTD
0 are

the LT of the Láme constants and are defined as [34,35]

kTD
0 ¼ jTD
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2lTD

0

3
; jTD

0 ¼
g0j0s

l0 þ sg0
; lTD

0 ¼
g0l0s
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in which j0 and g0 denote the bulk modulus and the viscosity of
matrix, respectively. Moreover, the LT of Poisson’s ratio mTD

0 of dis-
continuous fiber-reinforced composites are obtained through the
following relation

mTD
0 ¼

3jTD
0 � 2lTD

0

6jTD
0 þ 2lTD

0

ð21Þ

The effective viscoelasticity tensor of the aligned discontinuous fi-
ber-reinforced polymeric composites can be derived as

C�ðtÞ ¼ Cð1ÞIK ðtÞdijdkl þ Cð2ÞIJ ðtÞðdikdjl þ dildjkÞ ð22Þ

where the parameters Cð1ÞIK ðtÞ and Cð2ÞIJ ðtÞ can be obtained by taking
the direct inverse Laplace transform of Eqs. (17) and (18).

2.3. Effective viscoelastic moduli of randomly oriented discontinuous
fiber-reinforced composites

In this subsection, we consider polymeric composites in which
discontinuous fiber reinforcements are randomly oriented in a
3D space (cf. 43]. In order to obtain the effective viscoelastic mod-
uli with 3D randomly dispersed fibers, the averaging process over
1–3 plane orientations of the governing equation is carried out as
defined in the following equation [36,40]:
hCi ¼
R p
�p
R p

0

R p=2
0 Cð/; c;wÞ sin cd/dcdwR p

�p

R p
0

R p=2
0 sin cd/dcdw

ð23Þ

where hi denotes the 3D orientation average process and
Cijkl ¼ cipcjpckrclsCpqrs, in which cij are the direction cosine from the
local fiber coordinates to the global coordinates (cf. 30,43], and is
given by

½cij� ¼
cos h sin h 0
� sin h cos h 0

0 0 1

264
375 ð24Þ

After a lengthy algebra in accordance with the aforementioned
process, the components of the effective fourth-rank tensor hC⁄(t)i
read

hC�ðtÞi ¼ �C1ðtÞdijdkl þ �C2ðtÞðdikdjl þ dildjkÞ ð25Þ

where

�C1ðtÞ ¼
1

15
Cð1Þ11 ðtÞ þ 4Cð1Þ12 ðtÞ þ 4Cð1Þ21 ðtÞ þ 6Cð1Þ22 ðtÞ þ 2Cð2Þ11 ðtÞ
n

� 4Cð2Þ12 ðtÞ þ 2Cð2Þ22 ðtÞ
o

ð26Þ

�C2ðtÞ ¼
1

15
Cð1Þ11 ðtÞ � Cð1Þ12 ðtÞ � Cð1Þ21 ðtÞ þ Cð1Þ22 ðtÞ þ 2Cð2Þ11 ðtÞ
n

þ 6Cð2Þ12 ðtÞ þ 7Cð2Þ22 ðtÞ
o

ð27Þ

Details of the averaging process over 3D orientations of the
governing equation can be found in [36,30,31,40,43].

3. Strain rate sensitivity of polymeric composites

The strain rate affects the overall behavior of polymeric materi-
als and can be therefore an important consideration for an accurate
prediction [41]. However, owing to the complexity of determining
the strain rate sensitivity, only a few micromechanical studies have
investigated the correlation between the strain rate and the behav-
ior of polymeric composites [7]. The present study adopts a modi-
fied Maxwell model [51] for the modeling of the strain rate
sensitivity of a polymer matrix.

The Maxwell model is widely used for viscoelastic modeling
since it accurately predicts how the stress in most polymers decays
exponentially with time [38]. The spring stands for the elastic
modulus E0 of the polymer matrix; and the damper, on the other
hand, signifies the viscosity g0 of the matrix. Thus, the widely
known single Maxwell model [11] can be expressed as follows:

_�ðtÞ ¼
_rðtÞ
E0
þ rðtÞ

g0
ð28Þ

Following [51] considering the first-order linear differential equa-
tion theory, Eq. (28) can be rewritten as

rðtÞ ¼ E0

Z t

0
exp

�E0ðt � sÞ
g0

� �
_�ðsÞds ð29Þ

When consideration is given to a special but useful condition that
enables the strain rate to remain constant throughout the test per-
iod, Eq. (29) can be rephrased as [51]:

rðtÞ ¼ _�g0 1� exp
�tE0

g0

� �� �
ð30Þ

In addition, the constitutive equation for a constant strain rate,
which can be obtained by substituting t ¼ �ðtÞ= _�, can be used to
estimate the viscosity of a polymer matrix.

Fig. 1 shows the algorithm for the inverse analysis. In the
present study, a Newton–Raphson method the using the modified



Fig. 1. The algorithm for the inverse analysis for obtaining the viscosity property of
a polymeric matrix.
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Fig. 2. Relationship between viscosity (g) and strain rate ð _�Þ of epoxy resin (a) and
polypropylene resin (b).
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Maxwell model [51] is used for calculating the viscosity property of
the matrix. The Newton–Raphson method is repeatedly performed,
and the viscosity of the matrix is estimated against the experimen-
tal data [13,7] until the error becomes less than a given tolerance.
Accordingly, the viscosity of an epoxy matrix can be calculated as
[13]

g0 ¼ 31:6 expf�2:194 � logð _�Þg ð31Þ

Similarly, the viscosity of a polypropylene matrix [7] can also be
obtained as

g0 ¼ 7:2 expf�2:187 � logð _�Þg ð32Þ

The relationship between the obtained viscosity function g0 and the
strain rate _� of the epoxy matrix and the polypropylene matrix is
shown in Fig. 2a and b, respectively. It is observed from the figures
that the curve decreases exponentially with the increase of the
constant strain rate [42].

The above-mentioned approach is verified by incorporating the
calculated viscosity functions into the micromechanical model (Eq.
(20)). [13] conducted a stress–strain test on the epoxy matrix
under different constant strain rates ( _� ¼ 1:3 and 0.00006/s). Their
results are compared with the present predictions, which are sub-
jected to the same constant strain rate as used in the experiment as
shown in Fig. 3a. Fig. 3b shows comparisons between the results of
the proposed model and the experimental results on the polypro-
pylene matrix with various constant strain rates ( _� ¼ 115, 11.5,
1.15, 0.115, 0.0115, and 0.00115/s). It is noted that the volume
fraction of discontinuous fibers is assumed to be zero (/1 = 0%) in
the simulations since the experiment was carried out on a pure
polymer matrix. Fig. 3a shows that the prediction results of the
proposed model, which considers the strain rate effect, are in
agreement with the experimental data. The predictions of early
stage of the stress–strain responses do not match well with the
experimental data, whereas relatively good agreements between
the present predictions and the experimental data are observed
beyond � = 0.02 from Fig. 3b.

4. Numerical simulations

In this section, a series of numerical simulations based on the
proposed model are carried out to investigate the influence of the
damage parameter S0, the strain rate _�, the aspect ratio of fibers a,
and fiber orientation characteristics on the behavior of composites.
For the present numerical simulations, we adopt the material prop-
erties of discontinuous glass fiber-reinforced polypropylene matrix
composites in accordance with [10] as: E0 = 1.30 GPa, m0 = 0.36, and
g0 ¼ 7:2 expf�2:1868 � logð _�Þg; E1=78.51 GPa, m1=0.16, and /1=25%.
The spherical shape (a = 1) and two sets of the aspect ratio (a = 0.2,
5) for both orientation cases (unidirectionally aligned; randomly
oriented) are considered in the simulations. The damage parame-
ters and strain rate are fixed as S0 = 600 MPa, M = 2; _� ¼ 0:0001=s.
The predicted stress–strain responses of a polymeric composite
are exhibited in Fig. 4. It is shown from the figure that the stress–
strain response becomes stiffer as a continues to increase for both
orientation cases. It is also observed that the effect of the aspect ra-
tio is more pronounced in the case of the unidirectionally aligned
fiber-reinforced composites.

In order to evaluate the influence of the strain rate _�, four differ-
ent strain rates ( _� ¼ 0:001, 0.0001, 0.00001, and 0.000001/s) are
considered here. The same damage parameters as previously used
are utilized, and the aspect ratio is assumed as a = 5. Fig. 5 shows
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the predicted stress–strain responses with various strain rates. In
addition, the predicted normalized Young’s and shear moduli of
the composites under different strain rates are presented in
Fig. 6a and b, respectively. Figs. 5 and 6 show that the strain rate
affects the overall viscoelastic behavior of the composites, and
the viscous property becomes more pronounced as the strain rate
decreases.

To further examine the effect of the damage parameter S0,
which is related to the interfacial strength between discontinuous
fibers and the matrix, on the behavior of the composites, a
parametric analysis with various S0 values is conducted. The pre-
dicted stress–strain responses with various S0 values are plotted
in Fig. 7a. The evolution of damaged discontinuous fibers corre-
sponding to Fig. 7a is depicted in Fig. 7b. The strain–stress curves
increases slightly as the damage parameter S0 increases. It is also
found that discontinuous fibers evolve more rapidly to damaged
fibers as the damage parameter S0 decreases. Biaxial and hydro-
static tensile tests on the composites are also performed to
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various S0 values; (b) the damage evolution versus strain with various S0 values the
corresponding to (a).
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Fig. 8. The predicted stress–strain responses of discontinuous fiber-reinforced
polymeric composites under biaxial loading with various S0 values.
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Fig. 10. The predicted stress–strain curves of unidirectionally aligned (a) and 3D
randomly oriented (b) discontinuous fiber-reinforced polymeric composites with
various aspect ratios.
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examine the viscoelastic stress–strain response under different
loading conditions. The predicted biaxial and hydrostatic stress–
strain responses with various S0 values are exhibited in Figs. 8
and 9, respectively. Similar to the uniaxial loading condition, high-
er S0 leads to a stiffer stress–strain response.

The influence of the aspect ratio of fibers a on the predicted
stress–strain responses of composites containing aligned and 3D
randomly oriented fibers are shown in Fig. 10a and b. The same
material properties, damage parameters, and strain rate as used
in the previous simulations are utilized. Four different aspect ratios
(a = 2, 3, 5, 8) are considered. It is clear from the figures that the
aspect ratio is quite influential in the case of unidirectionally
aligned fiber-reinforced polymeric composites compared with 3D
randomly oriented fiber-reinforced composites. Conversely, lower
stress–strain responses are obtained from 3D randomly oriented
fiber-reinforced composites as a increases.

The predicted stress–strain responses of aligned and 3D
randomly oriented fiber-reinforced polymeric composites with



0

20

40

60

80

0 0.005 0.01 0.015 0.02
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different fiber volume fractions are presented in Fig. 11. The max-
imum stress–strain response is exhibited at / = 15% under uniaxial
loading condition.

5. Experimental comparisons

Predictions based on the proposed model are compared with
experimental data to further assess the predictive capacity of the
present framework. Two sets of experimental data for aligned
and 3D randomly oriented discontinuous fiber-reinforced poly-
meric composites [10,39] are chosen for comparisons.

First, predictions on aligned glass fiber-reinforced polypropyl-
ene matrix composites with two different fiber volume fractions
(/ = 8%, 16%) are made with the same material properties as
reported in [10] as: E0 = 1.30 GPa, m0 = 0.36, and g0 ¼ 7:2 exp
f�2:1868 � logð _�Þg; and E1 = 78.51 GPa, m1 = 0.25, and a = 50. Since
the damage parameters S0 and M were not reported in [10], they
are estimated following an experimentally derived stress–strain
curve reported in [10] as: S0 = 350 MPa and M = 2. The strain rate
is assumed to be _� ¼ 0:00001=s. The model parameters are fitted
at /1=16%; it should be noted that the same estimated values for
the parameters are applied to the /1 = 8% case. Fig. 12 shows the
comparison of the stress–strain curves of glass fiber-reinforced
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Fig. 12. Comparisons of the stress–strain curves of glass fiber-reinforced polypro-
pylene matrix composites with various fiber volume fractions (/ = 8%, 16%)
between the proposed micromechanics-based viscoelastic model and experimental
data [10].
polypropylene matrix composites with various fiber volume
fractions (/ = 8%, 16%) between the proposed micromechanics-
based viscoelastic model and experimental data [10]. The
predicted uniaxial stress–strain responses are shown to be a good
agreement with the experimental data. The predicted evolution of
damaged fibers corresponding to Fig. 12 is shown in Fig. 13.

The present predictions on 3D randomly oriented discontinuous
fiber-reinforced polymeric composites are compared with the
experimental data [39]. Similarly, the same material properties
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Fig. 14. (a) The comparison of stress–strain curves of discontinuous glass fiber,
epoxy matrix composites between the prediction and experimental data (Meraghni
and Benzeggagh, 1995); (b) the predicted damage evolution as a function of the
strain of the discontinuous fiber-reinforced polymeric composites corresponding to
(a).
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as reported in [39] are utilized as: E0=3.0 GPa, m0=0.35, and
g0 ¼ 31:557 expf�2:194 � logð _�Þg; and E1 = 72 GPa, m1 = 0.17,
a = 19.5, and /1 = 50%. The damage parameters and strain rate
are fitted as: S0 = 1.5 GPa, M = 0.9, and _� ¼ 0:00003=s. Fig. 14a show
the overall stress–strain response of the 3D randomly oriented
fiber-reinforced polymeric composites under uniaxial tensile
stress. In addition, Fig. 14b shows the predicted progression of
the volume fractions of damaged fibers corresponding to Fig. 14a.
Another good agreement between the present predictions and
the experimental data on 3D randomly oriented fiber-reinforced
polymeric composites is observed from the Fig. 14a.

The aforementioned comparative results may highlight the pre-
dictive capacity of the proposed micromechanical framework for
predicting the viscoelasticity of discontinuous fiber-reinforced
polymeric composites.
6. Concluding remarks

A micromechanical viscoelastic damage model has been pro-
posed for aligned and 3D randomly oriented discontinuous fiber-
reinforced polymeric composites. The model, which predicts the
effective viscoelastic stress–strain behavior of the composites, is
based on a combination of the Laplace-transformed superposition
principle and the ensemble-averaged micromechanics [34,18,19].
Weibull’s probabilistic function [52,20] is applied to the proposed
model to characterize the evolution of damaged fibers. An inverse
analysis is carried out to take into account the strain rate sensitiv-
ity of the polymer matrix. A series of numerical simulations are
conducted to examine the influence of the damage parameters
and strain rates; and different loading conditions are applied on
the proposed model for the purpose of predicting the stress–strain
responses. In addition, experimental comparisons are conducted to
present and assess the predictive capability of the proposed model.
The findings from a series of numerical simulations and compari-
sons can be summarized as follows:

(1) The aspect ratio a has a significantly effect on the aligned
fiber-reinforced composites but has a marginal effect on
3D randomly oriented fiber-reinforced composites.

(2) The Weibull’s probability damage parameters are related to
the damage evolution of the reinforcements in the compos-
ites, and higher S0 values lead to higher levels of stress–
strain behavior.

(3) The effects of the aspect ratio on the viscoelastic composites
are quite influential. A larger aspect ratio results in a higher
stress–strain response in aligned fiber reinforcements, while
3D randomly oriented fiber-reinforced composites produce
inverse results: a higher stress–strain response is obtained
with a smaller aspect ratio.

(4) The strain rate affects the overall behavior of viscoelastic com-
posites. A higher strain rate leads to a weak viscous property
and the behavior consequently becomes more elastic.

This study demonstrates the predictive capability of the pro-
posed micromechanics-based viscoelastic damage model. The
model is particularly suitable for predicting the behavior of aligned
and 3D randomly orientated discontinuous fiber-reinforced poly-
meric composites. However, additional experimental and numeri-
cal tests are still needed to assess the parameters used in the
proposed model.
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Appendix A. The damage parameters Lð1ÞIK ; Lð2ÞIJ ; Lð3ÞIK , and Lð4ÞIJ in Eq.
(10)
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Appendix B. The elastic parameters Cð1ÞIK ; Cð2ÞIJ ; Cð3ÞIK and Cð4ÞIJ in Eq.
(13)

Cð2r�1Þ
IK ¼/r 2 fð2r�1Þ

IK -ð2rÞ
KK þfð2rÞ

II -ð2r�1Þ
IK

� �
þ
X3

n¼1

fð2r�1Þ
In -ð2r�1Þ

nK

( )
; ðr¼1;2Þ

ð41Þ

Cð2rÞ
IJ ¼ 2/rf

ð2rÞ
IJ -ð2rÞ

IJ ; ðr ¼ 1;2Þ ð42Þ

in which

-ð2r�1Þ
IK ¼ KðrÞIK

1� 2Lð2rÞ
II

; -ð2rÞ
IJ ¼ 1

2 1� 2Lð2rÞ
IJ

� � ð43Þ



1428 B.J. Yang et al. / Composite Structures 94 (2012) 1420–1429
with

KðrÞI1 ¼
1
2� Lð2r�1Þ

22 � Lð2rÞ
22

n o
Lð2r�1Þ

I1 þ Lð2r�1Þ
21 Lð2r�1Þ

I2

1
2� Lð2r�1Þ

22 � Lð2rÞ
22

n o
1� Lð2r�1Þ

11 � 2Lð2rÞ
11

n o
� Lð2r�1Þ

12 Lð2r�1Þ
21

ð44Þ

KðrÞI2 ¼ KðrÞI3

¼
1� Lð2r�1Þ

11 � 2Lð2rÞ
11

n o
Lð2r�1Þ

I2 þ Lð2r�1Þ
12 Lð2r�1Þ

I1

2 1
2� Lð2r�1Þ

22 � Lð2rÞ
22

n o
1� Lð2r�1Þ

11 � 2Lð2rÞ
11

n o
� Lð2r�1Þ

12 Lð2r�1Þ
21

ð45Þ
Appendix C. The parameters of LT Cð1ÞIK
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These parameters can be obtained by replacing elasitc phase by
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where the LT of Láme constants kTD
0 and lTD

0 are defined in Eq. (20),
and Poisson’s ratio in LT mTD

0 is defined in Eq. (21), respectively.
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