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a b s t r a c t

An elastoplastic constitutive model is proposed to predict the overall behavior of nanoparticle-reinforced
polymeric composites. The effective elastic moduli of nanocomposites, composed of a polymer matrix
and randomly dispersed nanoparticles, are constructed by incorporating the Eshelby tensor considering
the interface effect into a micromechanics-based ensemble volume-averaged method. Micromechanical
homogenization procedures are utilized to estimate an effective yield function in accordance with the
continuum plasticity theory and are employed to predict the overall elastoplastic behavior. The effects
of the particle size, interface moduli and the strengthening influence of the nanoparticles are investigated
via numerical simulations. Finally, comparisons between theoretical predictions and the available exper-
imental data are made to assess the predictive capability of the proposed framework.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Nanocomposites can be optimal candidates for numerous
important applications as a result of their high stiffness, high dura-
bility and low density [9]. The remarkably different features of
nanocomposites are caused by the dimensions of their nanofillers,
which lie within the nanoscale. The nanoscale fillers offer a prom-
inent mechanism to enhance the composite system, and many
studies have reported that the use of nanoparticles and nanofibers
increase the strength and durability of cementitious and polymeric
composites [1,44]. When nanoparticles are uniformly dispersed in
a polymer matrix, nanocomposites have a relatively large interface
surface area compared to microscale materials [49]. The extended
interface area leads to an increase in the interface effect and is
demonstrated to give a significant effect on the overall behavior
of the nanocomposites [4,44]; however, the contribution may be
negligible when a particle size exceeds 1 lm [7].

Numerous analytical or semi-analytical solutions for nanoparti-
cle-reinforced composites have been explored in an effort to pre-
dict their mechanical characteristics. With the concept of
micromechanics, the elastoplastic behavior of amorphous nano-
composites was modeled as a three-phase heterogeneous material
which instills a spherical shape in nanoparticles, with the inter-
layer surrounding the nanoparticles and matrix [38,4]. Further
studies which focused on particle–particle, particle-interlayer
and particle–matrix interactions were also conducted [24]. In addi-
tion, a model that considers the effects of the particle size, matrix
ll rights reserved.
degradation and the adhesion between the particles and the matrix
was proposed by Li et al. [36]. Colombini et al. [3] extended the
self-consistent scheme to account for the interface effect by includ-
ing an interphase region, and a three-phase unit cell model based
on a particle-interphase-matrix was formulated to investigate the
influence of the particle stiffness and size. It was concluded from
an assessment of the literature that smaller and harder particles
result in greater mechanical properties of composite materials
composed of latex and nano-sized particles.

Sun et al. [46] derived the effective stiffness of nanocomposites
by employing bottom-up and top-down multi-scale methods
based on micromechanics and compared the result with the result
from FEM modeling. The mechanism of nano-TiN powder in poly-
meric composites was investigated in experiments and in FEM
simulations [41]. Moreover, several studies adopted the molecular
dynamics (MD) simulation to analyze nanocomposites. Hong et al.
[8] simulated nano-Cu/FeS composites with the MD simulation and
demonstrated that the mechanical properties of the nanocompos-
ites depended on the sizes of the particles at the same exposure
condition of the reinforcing phase. Yang et al. [52] introduced a
scale-bridging method for nanoparticle-reinforced composites
and verified it in comparisons by means of the MD simulations.

A micromechanical framework based on the conventional
Eshelby theory [6] assumes that spherical inclusions are perfectly
embedded in the matrix and the interface region has zero interface
stress [47]. The assumption of the zero interface effect is accept-
able for microscale inclusion, but it cannot accurately predict an
inclusion smaller than 1 lm [7]. The current study aims to develop
an effective elastoplastic model for nanoparticle-reinforced poly-
meric composites considering the effects of interface properties
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and particle size. The present model successfully combines the
interior and exterior Eshelby tensors for nano-scale inhomogeneity
[4] and the micromechanics-based ensemble volume averaged
method [10]. In order to consider the size effect on both elastic
and plastic ranges, a separate derivation with an interface effect
for the pre- and post-yield behavior is newly developed by means
of ensemble volume averaged method. Within the present formu-
lation, influences of interface properties, matrix plasticity, and
nanoparticle size on the overall behavior of nanocomposites are
discussed in detail. The capability of the present model for predict-
ing the elastoplastic behavior of nanoparticle-reinforced compos-
ites is demonstrated through a number of numerical simulations
and experimental comparisons.

2. The ensemble-average procedures

2.1. Recapitulation of effective elastic behavior of nanoparticle-
reinforced composites

Following Ju et al. [13,18], a micromechanical framework for
nanocomposites, composed of a polymer matrix and uniformly-
dispersed nanoparticles, is summarized next. When the compos-
ites undergo a small amount of deformation, the total macroscopic
strain �� can be expressed as [13,34]

�� ¼ ��e þ ��p ð1Þ

where ��e and ��p denote the overall elastic and plastic strain, respec-
tively. The effective elastic stress–strain relationship can be written
as [18,32,33,29]

�r ¼ C� : ��e ð2Þ
where the effective elastic moduli of composites C�, as derived by Ju
and Chen [10,11], is as follows (cf. [29,25,45,50,51]):

C� ¼ C0 � Iþ B � ðI� S � BÞ�1
n o

ð3Þ

with

B ¼ /1 Sþ ðC1 � C0Þ�1 � C0

n o�1
ð4Þ

where ‘‘�’’ denotes the tensor multiplication, and the subscripts 0
and 1 respectively denote the matrix and the nanoparticle phase;
Cq is the elastic stiffness tensor of the q-phase; /1 is the volume
fraction of the nanoparticles, and I signifies the fourth-rank identity
tensor [30,31,26,37].

At the nanoscale, the interface stress between a matrix and
nano-inhomogeneities may have a significantly influence on the
overall behavior of composites [4,24]. The interior-Eshelby tensor
S for a nano-inhomogeneity with the interface effect is, therefore,
considered in this study. Following the method proposed by Ju
and Chen [10], Duan et al. [4], and Kim et al. [22], the volume-aver-
aged Eshelby tensor for a nano-inhomogeneity S can be obtained
using ensemble and volume-averaged procedures as follows:

S ¼ W1dijdkl þW2ðdikdjl þ dildjkÞ ð5Þ

with

W1 ¼ �
21
5

K1 �K2 þK3; W2 ¼
1
2

63
5

K1 þ 3K2 þ 1
� �

ð6Þ

where the parameters Ki (i = 1, 2, 3) are listed in the Appendix A
(see also [4,22]. Combining Eq. (3) with Eq. (5), the effective elastic
stiffness equation can be derived as (cf. [22])

C� ¼ bC1dijdkl þ bC 2ðdikdjl þ dildjkÞ ð7Þ

where

bC 1 ¼ j0ð1þ n2Þ �
2
3
l0ð1þ n1Þ; bC2 ¼ l0ð1þ n1Þ ð8Þ
with

n1 ¼
�/1ðl0 � l1Þ

l0 þ 2ð/1 � 1Þðl0 � l1ÞW2
ð9Þ

n2 ¼
�/1ðj0 � j1Þ

j1ð1� /1Þð3W1 þ 2W2Þ þ j0 1þ 3W1ð/1 � 1Þ þ 2W2ð/1 � 1Þf g
ð10Þ

where lq;jq, and mq (q = 0, 1) are the shear modulus, bulk modulus
and Poisson’s ratio of the q-phase, respectively.

2.2. Effective elastoplastic behavior of nanopartice-reinforced
composites

The effective elastoplastic behavior of nanoparticle-reinforced
composites can be estimated by employing an ensemble-volume
averaged homogenization procedure [38,40]. Upon deformation
or loading continues to increase, the nanoparticle-reinforced com-
posites may yield and become plastic [38]. Thus, the von Mises
yield criterion is adopted in the present study to account for the ef-
fects of initial yielding and the plastic hardening law of the matrix
[17]. Following Ju and Chen [11] and Ju et al. [12], the stress field in
the matrix is considered to satisfy the effective yield function at
any matrix point x:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hHimðxÞ

q
� Kð�epÞ 6 0 ð11Þ

where �ep and Kð�epÞ are the equivalent plastic strain and the isotro-
pic hardening function of the matrix, respectively. In addition,
hHimðxÞ defines the ensemble average of HðxjXÞ over all possible
realizations for matrix point x [14]

hHimðxÞ ffi H0 þ
Z

X
HðxjXÞ � H0
n o

PðXÞdX ð12Þ

in which H0 ¼ r0 : Id : r0 is the square of the far-field stress norm ap-
plied to the composites, Id denotes the deviatoric part of the fourth-
rank identity tensor I, and HðxjXÞ ¼ rðxjXÞ : Id : rðxjXÞ denotes the
square of the current stress norm at the local point x for a given
nanoparticle configuration X [21]. PðXÞ signifies the probability
density function to determine nanoparticle configuration X in the
composites [19]. A more detailed description of the ensemble-aver-
aged stress norm hHimðxÞ under the plane-strain condition can be
found in Ju and Tseng [18], Ju and Lee [15], and Lee and Pyo [27].

The total stress at any point x in the matrix is the superposition
of the far-field stress r0 and the perturbed stress r0 due to exis-
tence of particles as rðxÞ ¼ r0 þ r0, with possible rephrasing as
shown below [12]:

rðxÞ ¼ r0 þ C0 : GðrÞ : ��01 ð13Þ
where ��01 is the eigenstrain tensor expressed explicitly for a spher-

ical nanoparticle as ��01 ¼ � ðC1 � C0Þ�1 � C0 þ S
n o�1

: �0 [39]. The

exterior-Eshelby tensor for a spherical nano-inhomogeneity GðrÞ
can be rephrased as follows (cf. [4]):

GðrÞ ¼ 15ð7c2 � 6c1h2Þ
2h5 ninjnknl þ

9c1m0

h3 � 15c2

2h5

� �
ðdiknjnl

þ dilnjnk þ djkninl þ djlninkÞ þ
9c1

h3 �
15c2

2h5

� �
dijnknl

�
3 5c2 � 2ð5c1 � c3Þh

2 þ 8c1h2m0

n o
2h5 dklninj

þ 3c2 � 2ð5c1 � c3Þh
2 þ 8c1h2m0

2h5 dijdkl

þ 3ð2c1h2 þ c2 � 4c1h2m0Þ
2h5 ðdikdjl þ dildjkÞ ð14Þ
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with

c1 ¼ �
C 5Cð7þ 5m1Þ � 4ð3jr

s þ lr
s þ 5Þð10m1 � 7Þ

� �
6g11

ð15Þ

c2 ¼ �
C 3Cð7þ 5m1Þ � 4 jr

sð1þ m0Þ þ lr
sð2m0 � 1Þ þ 3

� �
ð10m1 � 7Þ

� �
3g11

ð16Þ

c3 ¼
Cð1þ m1Þ

3 ðjr
s þ 2Þð1� 2m1Þ þ Cð1þ m1Þ

� � ð17Þ

where r ¼ rn in which n is the unit vector, and the parameters g11

and g12 are given in the Appendix A (cf. [4,22]). In addition,
C ¼ l1=l0;h ¼ r=R, and r is the distance from the center of the
spherical inhomogeneities to any point x. jr

s ¼ js=ðRl0Þ and
lr

s ¼ ls=ðRl0Þ are non-dimensional parameters, and jr ¼
2ðls þ ksÞ in which ks and ls are the interface moduli are intrinsic
physical properties of the interface [4,5].

After a series of lengthy derivations, the ensemble-averaged
hHim can be determined as

hHimðxÞ ¼ r0 : T : r0 ð18Þ

where the components of the fourth-rank tensor T take the form

Tijkl ¼ T1dijdkl þ T2ðdikdjl þ dildjkÞ ð19Þ

with

T1 ¼ �
1
3
þ /1

5
24l2

0 45c2
3v

2
1 þ 60c2

3v1v2 � 4v2
2ðv3 � 5c2

3Þ
� �� �

ð20Þ

T2 ¼
1
2
þ /1

5
ð144l2

0v
2
2v3Þ ð21Þ

with

v1 ¼
l0 � l1

6l0 l0 þ 2ðl1 � l0ÞW2
� �

þ j0 � j1

9j0 j0ð3W1 þ 2W2 � 1Þ � 2j1ð3W1 þ 2W2Þf g ð22Þ

v2 ¼
l0 � l1

4l0 l0ð2W2 � 1Þ � 2l1W2
� � ð23Þ

v3 ¼ 40c2
1 � 36c1c2 þ 15c2

2 þ 4c2
1m0ð7m0 � 10Þ ð24Þ

The ensemble-averaged current stress norm r0 can be ex-
pressed in terms of macroscopic stress �r as follows [10]:

r0 ¼ P : �r ð25Þ

where the fourth-rank tensor P can be expressed as

Pijkl ¼ P1dijdkl þ P2ðdikdjl þ dildjkÞ ð26Þ

with

P1 ¼
/1 2b1W1 þ a1ð1� 2W2Þf g

ð/1 þ 2b1 � 2/1W2Þð/1 þ 3a1 þ 2b1 � 3/1W1 � 2/1W2Þ
ð27Þ

P2 ¼
b1

/1 þ 2b1 � 2/1W2
ð28Þ

with

a1 ¼
1
3

j0

j1 � j0
� l0

l1 � l0
þ 3W1

� �
; b1

¼ 1
2

l0

l1 � l0
þ 2W2

� �
ð29Þ
Combination of Eqs. (18) and (25) leads to an alternative
expression of the ensemble-averaged square of the current stress
norm at the matrix as [16]

hHimðxÞ ¼ �r0 : �T : �r0 ð30Þ

where the components of the fourth-rank tensor �T are defined as

�T � PT � T � P ð31Þ

and can be shown to be

Tijkl ¼ T1dijdkl þ T2ðdikdjl þ dildjkÞ ð32Þ

which can be shown to be

T1 ¼ ð3P1 þ 2P2Þ2T1 þ 2P1ð3P1 þ 4P2ÞT2; T2 ¼ 4P2
2T2 ð33Þ

The probabilistic ensemble-averaged current stress norm for
any point x in the nanocomposites can be characterized asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hHimðxÞ

p
¼ ð1� /1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r : �T : �r
p

, and the effective yield function gi-
ven in Eq. (11) becomes (cf. [12,14,20])

F ¼ ð1� /1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r : �T : �r

p
� Kð�epÞ ð34Þ

where the isotropic hardening function Kð�epÞ is taken as [14]

Kð�epÞ ¼
ffiffiffi
2
3

r
ry þ hð�epÞq
� �

ð35Þ

where ry signifies the initial yield stress, and h and q denote the lin-
ear and exponential isotropic hardening parameters, respectively. In
addition, the effective ensemble-averaged plastic strain rate _��p and
the effective plastic strain rate _�ep required for obtaining the ensem-
ble-averaged current stress norm were given in Eqs. (61) and (62) of
Ju and Zhang [19].

3. Numerical simulations

A series of numerical simulations are carried out using i) various
typical values for ks and ls and ii) MD simulation results [43,48] for
ks and ls.

3.1. Numerical simulations using various typical interface moduli

A polyimide is used as the matrix with the Young’s modulus
Em ¼ 4:2 GPa, the Poisson’s ratio mm ¼ 0:40, and the initial uniaxial
yield stress ry ¼ 80 MPa and the linear exponential isotropic hard-
ening parameters h = 280 MPa and q = 0.6 [43]. In addition, the
Young’s modulus and the Poisson’s ratio of the silica nanoparticles
are adopted in accordance with [43] as Ep ¼ 88:7 GPa and
mp ¼ 0:082, respectively, where the subscripts m and p correspond-
ingly represent the matrix and particle (Chen et al. [2]; [43]. Vari-
ous typical interface moduli (ks ¼ 1:5 N=m, ls ¼ 1 N=m;
ks ¼ 3 N=m, ls ¼ 2 N=m; ks ¼ 4:5 N=m, ls ¼ 3 N=m) are considered
in these simulations.

To investigate the interface effect of nanoparticles on the poly-
meric composites, we first conduct a parametric study of the inter-
face moduli [43]. The volume fraction of the nanoparticles is
assumed to be /1 ¼ 0:1. The effective Young’s modulus and bulk
modulus of the silica/polyimide nanocomposites with various
interface moduli are exhibited in Fig. 1a and b. The solid line cor-
responds to the estimation without considering the interface effect
and the dashed lines represent the predictions with the interface
effect. It is shown from Fig. 1 that as the nanoparticle size contin-
ues to increase, the effective Young’s and bulk moduli asymptoti-
cally converge, reaching a state without the interface effect [22].
A strong interface effect is noted when the nanoparticle size is
small, whereas a weak influence of the interface moduli is ob-
served beyond a particle size of 10 nm (cf. [4,5,22]).



(a)

(b)
Fig. 1. The effective Young’s modulus (a) and bulk modulus (b) of SiO2/polyimide
nanoparticle composites with respect to various interface moduli.

Fig. 2. The predicted stress–strain curves of nanoparticle-reinforced composites
under uniaxial tensile loading with various interface moduli ðks;lsÞ.

(a)

(b)
Fig. 3. The present predicted stress–strain responses under biaxial (a) and triaxial
(b) tension with various values of interface moduli.
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Figs. 2 and 3 show the effective stress–strain curves under uni-
axial, biaxial and triaxial tension with various interface moduli.
These figures exhibit tendencies similar to those of the numerical
simulations in Fig. 1 in which the highest stress–strain responses
are observed when the interface moduli ks ¼ 4:5 N=m and
ls ¼ 3:0 N=m, and the lowest stiffness as part of the stress–strain
behavior is rendered at ks ¼ 0 N=m and ls ¼ 0 N=m. The effect of
the interface moduli is significant on the elastoplastic stress–strain
responses under uniaxial loading conditions, whereas considerably
less influence is observed in the case of biaxial and triaxial tension.

3.2. Numerical simulations using MD simulation results for interface
moduli

In these simulations, the interface moduli of SiO2 nanoparticle-
reinforced polyimide composites are calculated based on the meth-
od proposed by Wang et al. [48] and MD simulation data from Ode-
gard et al. [43]. When the interphase is thin and stiff, the interface
moduli can be determined as [48]:

ks ¼
2lImIt
ð1� mIÞ

; ls ¼ lIt ð36Þ

where lI; mI , and t denote the shear modulus, the Poisson’s ratio,
and the thickness of interface region [48]. Odegard et al. [43] com-
puted the effective interface elastic properties of spherical silica/
polyimide composites by means of MD simulations (see, Table 3
of [43]). The interface moduli of the SiO2-reinforced polyimide
can be, thus, estimated as: ks ¼ 1:44 N=m and ls ¼ 1:08 N=m.

As shown in Fig. 4a, when the nanoparticle size increases, the
overall behavior of the effective Young’s modulus is generally re-
duced. It is clear from Fig. 4b that the effective bulk modulus also
tends to decrease as the particle size increases. In addition, the
effect of the volume fraction on the normalized Young’s and bulk
modulus with an increase in the radius of the nanoparticles is
shown in Fig. 5. The interface effect gradually decreases as the par-
ticle size increases, and eventually diminishing when the particle
size reaches 10 nm. Moreover, it is observed from Fig. 5a and b that
the interface effect is more pronounced at a higher volume fraction
of nanoparticles. It was demonstrated that the interface effect be-
tween the nanoparticles and the polymer matrix is fairly associ-
ated to a certain extent with the size and volume fraction of the
nanoparticles.

The effective stress–strain responses of nanoparticle-reinforced
composites under uniaxial tension are illustrated in Fig. 6. Based on
data reported by Odegard et al. [43], the radius of the nanoparticle
is set to R = 0.75 nm. The present predictions in Fig. 6 exhibit a sud-
den change from the elastic to the plastic deformation shortly after



(a)

(b)
Fig. 4. The effective Young’s modulus (a) and bulk modulus (b) of nanoparticle-
reinforced composites considering various particle sizes versus the volume fraction.

(a)

(b)
Fig. 5. Effects of the volume fraction of the nanoparticles ð/1Þ on the normalized
Young’s modulus (a) and the bulk (b) modulus with an increase in the radius of the
nanoreinforcements.

Fig. 6. Effects of the volume fractions of the nanoparticles on the normalized
uniaxial elastoplastic behavior of nanocomposites.
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the yield point. It is apparent in the figure that the initial yield
strength, plastic hardening modulus and Young’s modulus increase
as the volume fraction of the nanoparticles increases. This result
shows the strengthening effect of the inclusion on the overall
behavior of the nanoparticle-reinforced composites. The proposed
model is further utilized to predict the effective stress–strain
curves of the composites under various axisymmetric loading con-
ditions. Fig. 7a and b exhibits the predicted mechanical responses
under biaxial tension ( r22ð¼ r33Þ½ �=ry versus �22ð¼ �33Þ) and triax-
ial tension ( r11ð¼ r22= ¼ r33½ �=ry versus �11Þ, respectively. As dis-
played in Figs. 6 and 7, the overall responses show higher
stiffness in the elastic and plastic range as the volume fraction of
the nanoparticle increases. It is also observed from the figures that
a higher volume fraction of the nanoparticles leads to a higher
yield strength of the composites.

To investigate the effect of the nanoparticle size on the overall
elastoplastic behavior, the composites with varying radii of the
nanoparticles R subject to uniaxial tensile loading are considered.
As shown in Fig. 8, as the radius of nanoparticles increases from
0.1 nm to 10 nm, the effective stress–strain responses exhibit low-
er stiffness of the composites. This mainly arises due to the reason
that the interface effect of the nanoparticles is pronounced as the
radius of these particles decreases. Fig. 9a displays the results of
numerical simulations under the biaxial tensile loading in the case
of r22 versus �22. It is clear from this figure that the effect of the
particle size in the nanocomposites is quite influential compared
to the case of uniaxial tensile loading. As rendered in Fig. 8, when
the size of the nanoparticles increases (0.1, 0.2, 0.5, 1, and 10 nm),
the effective stress–strain curves exhibit lower stiffness in both the
elastic and the plastic ranges. The effect of the nanoparticle radius
R on the elastoplastic behavior of nanocomposites under triaxial
tensile loading for r11 versus �11 is also illustrated in Fig. 9b. In
Figs. 8 and 9, the nanocomposites show the highest stiffness and
yield strength when triaxial tensile loading is applied; relatively
higher elastoplastic behavior can be observed for the nanocompos-
ites with smaller nanoparticles. It can be concluded from the afore-
mentioned simulations that the effective mechanical properties of
the nanocomposites are significantly affected by the interface ef-
fect, size, and volume fraction of nanoparticles. In particular, it is
noted that as the volume fraction of nanoparticles continues to in-
crease, the interface effect tends to increase, eventually increasing
the overall stiffness of the nanocomposites.



(a)

(b)
Fig. 7. The overall stress–strain responses of nanoparticle-reinforced composites
during a biaxial (a) and triaxial tension (b) simulation.

Fig. 8. Overall stress–strain relationships of nano-sized SiO2/polyimide composites
ð/1 ¼ 10%Þ for various values of R under uniaxial loading.

(a)

(b)
Fig. 9. The biaxial (a) and triaxial tension (b) stress–strain relationships of
nanoparticlereinforced composites with a volume fraction of 10% with various
sizes.

Fig. 10. Comparisons of the Young’s modulus with the experimental data and the
present prediction for silica inclusion/polyimide composites.
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4. Experimental comparisons

To illustrate the predictive capability of the proposed model,
comparisons are made between the present predictions and exper-
imental data [53,42]. The material properties of the matrix and
nanoparticles are identical to those in [53] as Em ¼ 2:89 GPa,
mm ¼ 0:30 for the polyimide matrix, and Ep ¼ 73 GPa, mp ¼ 0:17,
R = 40 nm for the silica inclusion. The interface moduli are as-
sumed as ks ¼ 1:44 N=m and ls ¼ 1:08 N=m. The effective Young’s
modulus of composites is often referred to as an important indica-
tion of the mechanical behavior [47]. A prediction of the effective
Young’s modulus of nanocomposites with different volume frac-
tions is, therefore, conducted here to demonstrate the capability
of the proposed formulation. Fig. 10 shows the comparison
between the predictions and the experimental results [53]. The re-
sult shows that the present predictions are in good agreement with
the experimental data of the effective Young’s moduli [53].

Fig. 11 shows comparisons between the present predictions and
the experimental data quoted by Naito et al. [42]. The uniaxial
stress–strain curves of the experiments were recorded at 23 �C
for nano-SiO2/polyimide composites. The reported elastic moduli
and Poisson’s ratio of the matrix and the nanoparticles are
Em ¼ 3:77 GPa and mm ¼ 0:342 for the polyimide matrix and
Ep ¼ 72 GPa, mp ¼ 0:17, and R = 40 nm for the nano-SiO2 [42]. The
volume fractions of nanoparticles are respectively 1% and 10%,
and the following plastic parameters are employed: ry ¼ 80 MPa,
h = 280 MPa and q = 0.6. Moreover, the interface moduli are ob-
tained using Eq. (36) as: ks ¼ 1:44 N=m and ks ¼ 1:08 N=m. Note



Fig. 11. Comparisons between the experimental data [42] and the present
predictions of the nanocomposites (1% and 10%) under uniaxial tensile loading.

Fig. 12. Comparisons of effective Poisson’s ratio with the experimental data [42]
and the present predictions for nanosized SiO2/polyimide composites.
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that the plastic parameters and interface moduli are fitted at
/1 ¼ 1% after which the estimated values are applied to the 10%
case.

Naito et al. [42] also investigated the effective Poisson’s ratio of
nano-sized silica particle-reinforced composites. The material
properties and interface moduli used here are identical to those
used earlier. As depicted in Fig. 12, it is observed that the present
predictions match well with the experimental data for the
nanoparticle-reinforced composites. Overall, it is shown from
Figs. 10–12 that the present predictions match well with the
experimental data, showing the predictive capability of the
proposed micromechanical elastoplastic model considering the
interface effect.

5. Conclusions

A micromechanical model is proposed to predict the overall
elastoplastic behavior of nanoparticle-reinforced polymeric com-
posites, and to investigate the effect of nano-inclusion in the com-
posites. The effects of interface and size of the nanoparticle are
considered by means of the Eshelby tensor for a spherical nano-
inhomogeneity []. With an ensemble volume-averaged homogeni-
zation procedure [23,35,28], the effective yield criterion and the
elastoplastic behavior of nanocomposites are predicted. A series
of numerical simulations are performed to investigate the influ-
ence of the radius and the interface moduli of the nanoparticles
on the overall behavior of composites. The current micromechani-
cal model is also applied to various loading conditions of uniaxial,
biaxial and triaxial tension to predict the corresponding effective
stress–strain responses. The findings from the numerical simula-
tions can be summarized as follows:
(1) The interface effect of the nanoparticles decreases as the
particle size continues to increase, and ultimately reaching a
state without an interface effect.
(2) The interface effect is associated with the volume fraction of
the nanoparticles, and is more pronounced at a higher volume
fraction of nanoparticles.
(3) Stiffer stress–strain responses are displayed as the radius of
the nanoparticles decreases and as the volume fraction of the
nanoparticles increases.

The present predictions under a uniaxial tensile loading condi-
tion are compared with the experimental data reported by Zhang
et al. [53] and Naito et al. [42]. The predictions based on the pro-
posed model are generally in good agreement with the experimen-
tal data. The proposed methodology is expected to offer a wide
range of predictive capacity of nanoparticle-reinforced composites
and is likely to be suitable for more precise predictions of nano-
composites as well. The present micromechanical elastoplastic
model with the interface effect will be extended to consider vari-
ous problems induced by nano-inhomogeneities; however, addi-
tional numerical tests and experimental comparisons are
necessary to assess the parameters used in the proposed model.
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Appendix A. The elastic parameters Ki (i = 1, 2, 3) in Eq. (6) (cf.
[4,22])
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2Cð4� 5m0Þðjr

s þ 2lr
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3g11
; K2 ¼

g12
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where m0 and m1 are the Poisson’s ratio of matrix and nanoparticles.
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