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Abstract Continuousfiber-reinforced composites are impor-
tant materials that have the highest commercialized potential
in the upcoming future among existing advanced materials.
Despite their wide use and value, their theoretical mecha-
nisms have not been fully established due to the complexity
of the compositions and their unrevealed failuremechanisms.
This study proposes an effective three-dimensional damage
modeling of a fibrous composite by combining analytical
micromechanics and evolutionary computation. The inter-
face characteristics, debonding damage, and micro-cracks
are considered to be the most influential factors on the tough-
ness and failure behaviors of composites, and a constitutive
equation considering these factors was explicitly derived in
accordance with the micromechanics-based ensemble vol-
ume averaged method. The optimal set of various model
parameters in the analytical model were found using modi-
fied evolutionary computation that considers human-induced
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error. The effectiveness of the proposed formulation was val-
idated by comparing a series of numerical simulations with
experimental data from available studies.
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1 Introduction

It has been a number of years since composites (e.g.,
laminate, prepreg, towpreg etc.) have been introduced and
developed in the fields of science and engineering, but they
nevertheless remain costly [1]. Although diverse research on
composites has been carried out in light of their large com-
mercialized potential, the discovery of nano-materials has
influenced the trend in research toward nano-composites, and
away from conventional composites [2]. However, continu-
ous fiber-reinforced composites are being used in more than
50% of aircraft frames, for example [3], and so it is evident
that they are still importantmaterials with strong potential for
ongoing use in the future. Despite this, a theoretical under-
standing has not been fully established, due to the complexity
of the compositions and elusive failure mechanisms [4].

In this study, we propose an effective three-dimensional
(3D) material-damage model for fibrous composites, which
combines analytical micromechanics and evolutionary com-
putation that has recently been made possible by the devel-
opment of computational intelligence. After studying the
past three decades of theoretical and experimental studies on
fibrous composites, we concluded that the paramount factors
that contribute the toughness and failure behaviors in com-
posites are the interface characteristics, debonding between
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Fig. 1 SEM images of the typical fracture morphologies of fiber-
reinforced polymer composites

thematrix and continuous fiber, andmicro-cracks (see Fig. 1)
[5].

The manifestation of each mechanism was modeled
using the following well established methods: the ensemble-
volume average (EVA)method [6,7], the weakened interface
approach [8–10], the Weibull probability debonding method
[11,12], and the continuum damage model for the nucle-
ation of micro voids [13–15]. The micromechanics-based
EVA method was first proposed by Ju et al. [6] to predict the
effective elastic behaviors ofmulti-phase composites. A gov-
erning micromechanical ensemble-volume averaged field
equationwas developed, inwhich a heterogeneous composite
is statistically assumed tobe ahomogenous solid independent
of the shape of the representative volume element (RVE) [6].
In the micromechanical framework, the inter-inclusion inter-
actions are ignored for mathematical simplicity. Ju et al. [7]
extended the work to predict the mechanical behaviors of
composites containing randomly located yet unidirectionally
aligned circular fibers. Again, to allow a simple approximate

analytical solution, the fibers were assumed to be infinitely
long and equal-sized inclusion [7].

The Eshelby’s tensor for an inclusion with a weakened
interface was physically derived by Qu [8]. The weakened
interface between the inclusions and the matrix was modeled
by a spring layer of vanishing thickness, and the interfacial
compliance in the tangential and normal directions was posi-
tion independent [8]. Pyo and Lee [9] and Kim and Lee [10]
explicitly modified the Eshelby’s tensor for an infinite fiber-
shaped inclusion considering interface effects. Probability
approaches to modeling the debonding and microcrack phe-
nomena were constructed by Lee [11], Lee and Simunovic
[12], andKarihaloo [15]. By combining themicromechanical
framework and probabilistic functions, various multi-level
damage models have been developed to describe the differ-
ent damage mechanisms [14,16,17]. It should be noted that
the model parameters of the above-mentioned methods were
estimated based on experimentally obtained stress–strain or
load–displacement curves.

Each nonlinear model parameter set should be applied
differently depending on the corresponding material com-
bination. Nonetheless, the values of this fitting were found
heuristically, and this kindled a controversy regarding the
reliability and rigorousness of parameters. Above all, calcu-
lating interactions or correlations between experiments and
simulations is typically the most time-consuming aspect.

Therefore, we proposed finding optimal sets of each
parameter with an analytical formulation by applying evolu-
tionary computation of the genetic algorithm (GA). Herein,
additional components of human-induced error are included
in the GA considering complexity and production character-
istics of the composites. Each model parameter and range
was determined by referring to past research and a numer-
ical simulation performed independently in this study. To
validate the approach proposed in the present study, exper-
imental results for various circumstances were compared to
the predicted values. It is believed that the present study helps
to enhance understanding of damage phenomena in heteroge-
neous composites that contain continuous fiber. In addition,
the developed analytical modeling and GA proposed in the
study for fibrous composites have adaptive characteristics
and are expected to exhibit high correlation with other mate-
rial models.

2 A constitutive model for fibrous composites

2.1 3D material damage modeling with interface and
fiber orientation

Let us start by considering a representative volume element
(RVE) of composites composed of an isotropically elastic
matrix (phase 0) and a transversely elastic continuous fiber,
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Fig. 2 A schematic illustration of the proposed material modeling of fibrous composites

with interface properties (phase 1). We note that the unidi-
rectional (UD) fiber within the matrix is aligned in a 3-axis
and is uniformly distributed, as exhibited in Fig. 2 [18].
It is assumed that the composite materials may experience
failure due to damage under loading and increasing deforma-
tion [10]. As loading and deformation continue to increase,
some UD fibers will incrementally lose their load-carrying
capacity, and become debonded fibers (phase 2). In the litera-
ture [10,13,19], these debonded fibers (phase 2) are regarded
as equivalent cylindrical voids [13], and this is adopted here
as well. In addition, the micro-cracks (phase 3) produced
by external loading/deformation are included in the present
derivation bymodeling themas randomly dispersed spherical
voids.

The equivalence equation of the proposed multi-phase
composites (matrix, fiberwith interface properties, debonded
fiber, and micro-crack) can be expressed as

σ = C∗ : ε (1)

where σ and ε signify the averaged stress and strain. C∗ is
the effective stiffness tensor for continuous fiber-reinforced
polymeric (FRP) composites, which can be derived based on
the EVA method [6,12,17]:

C∗ = C0 ·
⎡
⎣I +

3∑
q=0

{
φq
(
Aq + Sq

)−1

·
[
I − φqSq · (Aq + Sq

)−1
]}−1

⎤
⎦ (2)

with

Aq = (C1 − C0)
−1 · C0 (3)

whereCq andφq are the elasticity tensor and volume fraction
of q-phase (q = 0, . . . , 3); I denotes the four-rank identity
tensor; Sq means the Eshelby’s tensor for q-phase.

The interface layer property between the matrix and con-
tinuous fiber is modeled by the linear spring layer approach
with a continuous traction yet a displacement jump [8,20]:

ηi j = αδi j + (β − α) nin j (4)

where δi j and ni represent the Kronecker delta and out-
ward normal; α and β are the interface parameters, denoting
the tangential and normal components of the compliance,
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respectively [8]. With the help of the linear spring model, the
modified Eshelby’s tensor for a circular cylindrical fiber with
interface properties (phase 1) can be written as [8,16]

S1 = 1

256r (1 − v0)
2

[
S(1)
I K δi jδkl + S(2)

I J

(
δikδ jl + δilδ jk

)]

(5)

with

S(1)
11 = 32r

(
−1 + 5v0 − 4v20

)
− 3πμ0α

+ 24π (1 − 2v0)
2 λ0β + 3π

(
7 − 32v0 + 32v20

)
μ0β

S(1)
22 = S(1)

12 = S(1)
21 = S(1)

11

S(1)
13 = 128v0 (1 − v0) + 48π (1 − 2v0) β {(1 − 2v0) λ0

− v0μ0} , S(1)
23 = S(1)

13 ,

S(1)
31 = S(1)

32 = S(1)
33 = 0

S(2)
11 = 32r

(
3 − 7v0 + 4v20

)
+ 3πμ0 (α + β) ,

S(2)
22 = S(2)

12 = S(2)
21 = S(2)

11

S(2)
13 = 4 (1 − v0)

2 (16r + 3πμ0α) ,

S(2)
23 = S(2)

31 = S(2)
32 = S(2)

13 , S(2)
33 = 0 (6)

where r is the radius of the fiber; λ0, μ0 and ν0 are the Láme
constant, shear modulus, and Poisson’s ratio of the matrix,
respectively. S2 and S3 in Eq. (2) denote the Eshelby’s tensor
for the debonded cylindrical fiber (phase 2) and the spherical
micro-crack void (phase 3), and their components are given
in “Appendix 1”.

By carrying out lengthy algebra, the stiffness tensor for
the four-phase composite containingUDfiber can be derived,
and takes the following form:

C∗ = C (1)
I K δi jδkl + C (2)

I J

(
δikδ jl + δilδ jk

)
(7)

in which

C (1)
I K = 2λ0F

(2)
KK + 2μ0F

(1)
I K + λ0

3∑
R=1

F (1)
RK ,

C (2)
I J = μ0

(
F (2)
I J + F (2)

J I

)
(8)

where the parameters FI K
(1) and FI J

(2) are listed in
“Appendix 2”. Based on the derived stiffness tensor CI K

(1)

and CI J
(2), the five effective elastic moduli for continuous

fibrous composites along the fiber axis can be recast as [9,21]

E∗
A = C (1)

33 + 2C (2)
33 −

(
C (1)
13

)2

C (1)
11 + C (2)

11

, v∗
A = C (1)

13

2
(
C (1)
11 + C (2)

11

)

κ∗
T = C (1)

11 + C (2)
11 , μ∗

T = C (2)
11 , μ∗

A = C (2)
13 , (9)

where E , v, κ , and μ are, respectively, the Young’s modulus,
Poisson’s ratio, bulk modulus, and shear modulus; the sub-
scripts A and T signify the axial and transverse directions
[21]. The transverse Young’s modulus and Poisson’s ratio
can also derived from Eq. (9) as

E∗
T = 4κ∗

Tμ∗
T

κ∗
T + ϒμ∗

T
, v∗

T = κ∗
T − ϒμ∗

T

κ∗
T + ϒμ∗

T
(10)

with

ϒ = 1 + 4
(
v∗
A

)2
κ∗
T

E∗
A

(11)

Furthermore, based on the governing equation for the UD
fiber-reinforced composites, in conjunctionwith the transfor-
mation law [22], the following stress–strain transformations
through an angle θ along 1-axis can be derived as [16,23]

σ ς = T−1
1 · C · T2 : εξ ≡ C (θ) : εξ (12)

with

T1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2 θ 0 sin2 θ 0 −2 cos θ sin θ 0
0 1 0 0 0 0

sin2 θ 0 cos2 θ 0 2 cos θ sin θ 0
0 0 0 cos θ 0 sin θ

cos θ sin θ 0 − cos θ sin θ 0 cos2 θ − sin2 θ 0
0 0 0 − sin θ 0 cos θ

⎤
⎥⎥⎥⎥⎥⎥⎦

,

T2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2 θ 0 sin2 θ 0 − cos θ sin θ 0
0 1 0 0 0 0

sin2 θ 0 cos2 θ 0 cos θ sin θ 0
0 0 0 cos θ 0 sin θ

2 cos θ sin θ 0 −2 cos θ sin θ 0 cos2 θ − sin2 θ 0
0 0 0 − sin θ 0 cos θ

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

In accordance with the aforementioned process, the effec-
tive stiffness matrix of the fibrous composites considering
the fiber orientation (θ ) can be explicitly written as

C(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

C̄11 C̄12 C̄13 0 C̄15 0
C̄21 C̄22 C̄23 0 C̄25 0
C̄31 C̄32 C̄33 0 C̄35 0
0 0 0 C̄44 0 C̄46

C̄51 C̄52 C̄53 0 C̄55 0
0 0 0 C̄64 0 C̄66

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

where the parameters c̄i j (i , j = 1−6) in Eq. (14) are listed
in “Appendix 3”.
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2.2 Debonding damage and micro-crack modeling

In the present study, interfacial debonding and micro-cracks
were chosen as the major factors impacting the failure mech-
anism in composites, and these were included in the present
analytical constitutive model for a more precise prediction.
Following [10], a damage model based on the Weibull prob-
ability distribution function [24] was considered to describe
the evolutionary interfacial debonding between the matrix
and fibers [10]. The debonding damage can be modeled as
the volume fraction of the debonded fiber φ2, which can be
expressed as [24–26]

φ2 = φ

⎧⎨
⎩1 − exp

⎡
⎣−

((
σ f
)a

S0

)M
⎤
⎦
⎫⎬
⎭ (15)

where φ denotes the original (initial) volume fraction of
fiber; S0 andMare theWeibull probability parameters, which
are related to the interfacial strength and progressive rate of
debonding damage, respectively [11]. Following the numeri-
cal analysis of the debonding parameter reported in [11], the
Weibull probability parameter of interfacial strength, denoted
by S0, is defined as S0 = S · σy , where σy is the yield stress
of the composite. Moreover, (σ f )

a signifies the averaged
internal stress of fibers induced by external loading and/or
deformations, explicitly derived as [16]

σ f = C1 ·
[
I − S1 · (A1 + S1)

−1
]

·
[
I − φ1S1 · (A1 + S1)

−1
]−1 : ε̄ ≡ U : ε̄ (16)

in which

Ui jkl = U (1)
I K δi jδkl + 2U (2)

I J

(
δikδ jl + δilδ jk

)
(17)

with

U (1)
I K = 2λ1ξ

(2)
KK + 2μ1ξ

(1)
I K + λ1

3∑
R=1

ξ
(1)
RK ,

U (2)
I J = μ1

(
ξ

(2)
I J + ξ

(2)
J I

)
(18)

where λ1 and μ1 are the Láme constant and shear modulus
of fiber, and the parameters ξI K

(1) and ξI J
(2) can be defined

as follows:

ξ
(1)
I K = 1

2

⎛
⎝−P(1)

I K

D(2)
KK

+
χI K

(
2P(2)

I I − 1
)

D(2)
I I

⎞
⎠+

3∑
R=1

P(1)
I R χRK

2D(2)
RR

,

ξ
(2)
I J = 1

4

(
1

2
− P(2)

I J

)(
1

D(2)
I J

+ 1

D(2)
J I

)
(19)

with

⎧⎪⎪⎨
⎪⎪⎩

χI1

χI2

χI3

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎣

D(1)
11 + 2D(2)

11 D(1)
21 D(1)

31

D(1)
12 D(1)

22 + 2D(2)
22 D(1)

32

D(1)
13 D(1)

23 D(1)
33 + 2D(2)

33

⎤
⎥⎥⎥⎦

−1⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D(1)
I1

D(1)
I2

D(1)
I3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(20)

and

D(1)
I K = −φ1P

(1)
I K , D(2)

I J = 1

2
− φ1P

(2)
I J (21)

where the parameters PI K (1) and PI J (2) are given in Eq. (34)
of “Appendix 2”. From the derived internal stress of the fiber
(σ f ) through Eqs. (16)–(21), the averaged internal stresses
of UD fibers, (σ f )

a , in composites can be calculated as

(
σ f
)a

=
√(

σ f
)2
11 + (σ f

)2
22 + (σ f

)2
33 + 2

((
σ f
)2
23 + (σ f

)2
13 + (σ f

)2
12

)

(22)

Furthermore, the nucleation of spherical micro-crack density
in composites by external loading and deformations is mod-
eled here in accordance with the continuum damage model
[14,15], as follows

φ3 =
{

φini tial

φini tial + c1
(
1 − εth

εa

)c2 (23)

where φini tial and εth signify the initial density of micro-
cracks and the strain threshold below which no nucleation
occurs [16]. c1 and c2 are the micro-croak parameters, which
are related to the intensity and distribution of micro-crack
nucleation, respectively. In addition, εa is the current effec-
tive macroscopic strain in composites, which can be defined
as [15]

εa =
√

ε211 + ε222 + ε233 + 2
(
ε223 + ε213 + ε212

)
(24)

Overall, the material damage modeling presented here
includes seven model parameters. These are related to the
fiber interface (α and β), debonding damage (S0 and M), and
micro-crack (εth , c1, and c2) characteristics. These param-
eters need to be properly estimated since they can have a
significant effect on the overall predictions for the compos-
ites. However, it is not guaranteed that estimating the optimal
parameter set manually will provide the most reasonable
solution. The evolutionary computation method-based GA
is thus applied in the present study to find the optimal com-
bination of parameters in the derived model.
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Table 1 Procedure for
optimizing parameter sets in the
constitutive equation using
genetic algorithm

2.3 Application of genetic algorithm

In this paper, the GA, an evolutionary computation method
is used to find the optimal parameter sets in the proposed
constitutive equation. The GA introduced by Fraser [27]
is guaranteed to converge to an optimal solution in a
multivariable function by repeating population generation,
fitness/penalty evaluation, selection, reproduction, crossover,
andmutation [27,28]. Compared to other optimizationmeth-
ods, it is capable of solving any optimization problem based
on a chromosome approach and is capable of handling mul-
tiple solution search space with less complexity and while
being more straightforward [29].

The entire procedure for optimizing the parameter sets
of the constitutive equation by using the GA is shown in
Table 1. As shown in the table, the initially generated pop-
ulation of chromosomes, composed of parameters of the
proposed constitutive equation of fibrous composites such
as Pset = [σθ , σϕ, K , S, M, εth, c1, c2], is generated. Here,
σθ , σϕ , K , S, M , εth, c1, and c2 denote the fiber angle,
volume fraction of fiber, scale factor of fiber interface, inter-
facial strength, progressive rate of debonding damage, strain
threshold of micro-crack, micro-crack intensity, and distri-
bution of micro-crack nucleation, respectively. To reflect the
uncertainties in the experiments and human-induced error,σθ

and σϕ are included in the parameter set with a range of [−3,
3] deg at an interval of 0.1 and [−0.01, 0.01] at an interval
of 0.001, respectively.

After being generated, each chromosome is evaluated in
terms of the penalty and best chromosome, which minimizes
the difference between the estimated and previously obtained
stress values. The chromosome with the lowest penalty value
has a higher probability of being selected in the next genera-
tion. The selected best chromosome is reproduced to form a
new population, and crossover andmutation are performed to
prevent the GA from converging on a local minimum. Based
on the updated population, Steps 2–4 are looped until the
stopping criterion is satisfied or the number of generations
reaches the maximum number of generations. The parame-
ter set with the minimum penalty value is selected and the
constitutive equation is automatically tuned.

3 Numerical simulations

A comprehensive numerical simulation is carried out in
this section to illustrate the influence of the model param-
eters on the effective properties of the composite. For
convenience, the material properties for AS4 carbon fiber-
reinforced polyether ether ketone (PEEK) composites used
in [30] are adopted as follows: Em = 6.14GPa, vm = 0.356;
E f = 214GPa, v f = 0.263, φ f = 60%; σy = 150MPa,
where the subscripts m and f signify the matrix and fiber,
respectively.

Based on the above material constants, predictions with
various typical values for the model parameters are depicted
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Fig. 3 The predicted
mechanical behaviors of AS4
carbon fiber-reinforced PEEK
composites with various model
parameters
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in Fig. 3. Figure 3a displays the predicted effective axial
Young’s and transverse shear moduli of the composite to
illustrate the effects of the interface characteristics (K )

between the matrix and fibers. As shown in the figure, the
properties of the effective mechanical constants are reduced
when the scale of the interface parameter that is defined as
K decreases. It should also be noted that interface character-
istics tend to be emphasized when the volume fraction of the
fibers increases.

To investigate the effects of debonding damage on the
stress–strain behaviors of composites, numerical tests of S
and M were carried out, and the results are shown in Fig. 3b,
c. The nonlinear responses (concave downwards) that occur
with different model parameters in Fig. 3b, illustrate that the

resistance to debonding damage grows when the interfacial
strength S increases. Figure 3c shows that a higher value of
M , which is associatedwith the rate of progressive debonding
damage, leads to a faster evolution of interfacial debonding.

The presentmethod-based predictionswith varyingmodel
parameters for micro-cracks (εth, c1 and c2), exhibited
in Fig. 3d–f, were further investigated to determine how
micro-crack damage influences the mechanical and tough-
ness behaviors of composites. It is predicted in Fig. 3d that
the micro-crack effect is more pronounced at a lower strain
threshold of micro-crack nucleation (εth). Figure 3d clearly
shows that the toughness on the energy absorption of com-
posites is associatedwith the initial threshold ofmicro-cracks
within the matrix.
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Fig. 4 The predicted
stress–strain responses of
E-glass fiber-reinforced epoxy
composites under uniaxial
tensile loading with various
interface parameters of a the
tangential, α, and b normal, β,
components of compliance, and
c under biaxial tensile loading
with respect to fiber direction, θ
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Various values of the micro-crack parameters c1 and c2,
which are related to the intensity and distribution of micro-
crack nucleation, are shown in Fig. 3e, f, respectively. As
displayed in Fig. 3e, reduced stiffness appears at a later
strain range as the micro-crack parameter c1 increases. In
contrast, as the parameter value c2 increases from 0.1 to
10, higher effective stress–strain responses are predicted. It
is also observed from Fig. 3f that the effect of the second
micro-crack parameter c2 is more influential on the stress–
strain behavior of the composites than the first micro-crack
parameter c1.

To further illustrate the descriptive with respect to the
model parameters in the proposed model, an additional
numerical simulation of E-glass fiber-reinforced epoxy com-
posites was carried out. The adopted material constants are
[31]: Em = 2.6GPa, vm = 0.4; E f = 72.5GPa, v f = 0.22.
The influence of the interface scale (K ) on the elastic behav-
ior of the composites is investigated in Fig. 3, and additional
parametric studies of the compliance parameters in the tan-
gential (α) and normal (β) directions of the interface are

illustrated in Fig. 4a, b, respectively. In the figures, stiffer
behaviors are predicted as the values of both interface con-
stants are increased, and the effect of β is more influential
than that of α.

The fiber orientation in composite materials is also a very
important factor in composite design, and is known to have a
great effect on the material/structural behaviors under multi-
axial loading conditions. The biaxial stress–strain responses
for various fiber angles (0◦, 45◦, 60◦) consequently calcu-
lated, and are shown in Fig. 4c. Stiffer stress–strain responses
in the 3–3 axis are obtained when the fiber orientation angle
is small, but inversely proportional to this, weak behaviors in
the 1–1 axis are predicted as the orientation degree decreases.
When the orientation angle is 45◦, the 1 and 3 axis behav-
iors are predicted to be similar under biaxial tensile loading
conditions.

The micromechanical model employed here is based on
the EVA method proposed by Ju et al. [6,7]. In the EVA
approach, instead of estimating the exact local solution of the
fiber interaction problem, a simple but accurate approximate
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analytical solution has been derived to predict the effective
behaviors ofmulti-phase composites [7]. Because of the non-
interacting approximation for mathematical simplicity, the
proposed model may be limited when predicting high vol-
ume fraction fiber-reinforced composites [32]. However, in
the present study, we tried to overcome this limitation by
applying various additional mechanisms, such as interface
and microcracks, to the classical EVA model.

A comparisonwith the finite element (FE) calculation [31]
was carried out for validation purpose. An E-glass fiber-
reinforced epoxy composites [0/903/0]T with 52.5%volume
fraction is considered here; the subscripts 3 and T denote
the number of layers and total, respectively. The material
constants are [31]: Em = 2.6GPa, vm = 0.4; E f =
72.5GPa, v f = 0.22. The effective constitutive equation
of the cross-ply laminate composite can be explicitly calcu-
lated by substituting the proposed model into the laminate
theory as [22,33]

{
N
M

}
=
[
A B
B D

]{
ε0

κ

}
(25)

where {N } and {M} denote the inplane forces and moments,
respectively; {ε0} and {κ} are the midplane strains and cur-
vatures of the laminate composites. The coefficients [A]
through [D] are defined as [22]

[A] =
n∑

k=1

[C (θ)] (zk − zk−1) ,

[B] = 1

2

n∑
k=1

[C (θ)]
(
z2k − z2k−1

)
,

[D] = 1

3

n∑
k=1

[C (θ)]
(
z3k − z3k−1

)
(26)

where z signifies the integrated over the laminate thickness, k
denotes the individual number of layer, and thematrix C(θ ) is
given in Eq. (14). As shown in Fig. 5, the present prediction
is quantitatively a good match with the FE result and the
experimental data without the GA calibration process.

The present numerical simulations in this section pro-
vide the upper and lower bounds of the model parameters
in the proposed framework. In conjunction with previous
related works [9–11,13,15], the ranges of each parameter
for optimal set estimation by the GA are: α = 2K and
β = 3K , where K = 10−6−106/Pa and the increment
is 10; S = 0.1−10 and M = 0.1−5, where the incre-
ment is 0.01; εth = 0.001−0.1, where the increment is
0.001; c1 = 0.001−0.2, where the increment is 0.001; and
c2 = 0.1−10, where the increment is 0.1. In this study with
the GA, a single point crossover, stochastic uniform selec-
tion, and a Gaussian mutation operator are used. Percent
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Fig. 5 Comparisons of the prediction values, experimental results, and
numerical predictions of the uniaxial tensile responses of E-glass fiber
reinforced epoxy matrix composites

probability of crossover of 0.6, maximum number of gen-
erations of 150, and stall generation of 100 with the average
relative change in 1e−6 are used.

4 Validation of the proposed approach

To assess the predictive capability of the proposed approach,
comparisons were made between the predictions for various
composite systems and previous experimental results [18,30,
31,34–37]. The micromechanics-based formulation devel-
oped here is coupled with the GA, and the optimal set of
model parameters is estimated by comparing it with the
experimental data. We first conduct a convergence study of
population size with GA to obtain a reasonable population
scale, which is essential in developing a reliable simulation.

In most GA simulations, the prediction reliability is
improved as the population size increases, while the compu-
tational cost increases in inverse proportion to the population
size. We consider five different sizes of population and com-
pare the estimated strain values with the experimental data
obtained by Weeks and Sun [30]. Figure 6 shows the calcu-
lated the normalized root mean square error (NRMSE) and
normalized computational cost (NCC)with different levels of
population. It can be concluded from Fig. 6 that the influence
of population size on theNRMSE is negligible beyond a pop-
ulation size of 50. NCC, however, exponentially increased
with an increase in the population size, indicating that a
reasonable population size is required for an accurate and
efficient simulation. In this study, a population size of 50 is
determined by test results, as shown in Fig. 6.
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Fig. 6 The calculated NRMSE and normalized computational cost
based on the present GA simulation

4.1 Comparative study between experimentally
measured moduli and present predictions

The results of a comparative study of effective longitudinal
Young’s modulus (EA), transverse Young’s modulus (ET ),
and transverse shear modulus (μT ) of graphite (AS) fiber-
reinforced epoxy (3501) composites [18] are shown in Fig. 7.
We employ the material properties of the composites as fol-
lows [18]: Em = 5.35GPa, vm = 0.35; E f = 232GPa,
v f = 0.22. Since the stress–strain curve of the composites is
not reported by Huang [18], only the interface parameters of
the proposed framework are estimated by the GA approach
with a population size of 50. The calculated interface param-
eters are: α = 2 × 10−3 and β = 3 × 10−3/MPa.

Figure 7a shows a comparison between the experimental
data [18] and the present prediction based on the abovemodel
and material parameters. Overall, it can be seen from the
figure that the experimental results and the present prediction
match well. The calculated representative penalty values by
the GA corresponding to Fig. 7a are depicted in Fig. 7b. In
this figure, the black squares signify the mean penalty value,
while the blue dots represent the mean penalty value. It can
be seen that as the population size continues to increase, the
best penalty value converge, reaching a state of equilibrium.

4.2 Uniaxial and transverse tensile tests and present
predictions

To further investigate the applicability of the present com-
bined analytical and numerical formulation, the prediction
by the proposed approach is compared with (1) a uniaxial
tensile test of silicon carbide (SCS) fiber-reinforced cal-
cium aluminosilicate composites [35] and (2) a transverse
tensile test of SCS-6 fiber/Ti-6 composites [36]. Following
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Fig. 7 a Comparisons of the predicted longitudinal Young’s modulus,
transverse Young’s modulus, and transverse shear modulus of graphite
(AS) fiber-reinforced epoxy (3501) composites and b the representative
penalty values calculated by the GA corresponding to a

[35], we adopt the material properties of the SCS/calcium
aluminosilicate composites as follows: Em = 97.9GPa,
vm = 0.25; E f = 188GPa, v f = 0.3, σy = 320MPa,
φy = 36%. The model parameters are estimated by GA as:
α = 2 × 10−1 /MPa, β = 3 × 10−1/MPa, S = 3.96,
M = 1.75, εth = 0.002, c1 = 0.2, c2 = 0.4. In addition,
the adopted material and model parameters for simulation
of SCS-6 fiber/Ti-6 composites [36] are: Em = 120GPa,
vm = 0.31; E f = 393GPa, v f = 0.25, σy = 370MPa,
φy = 45%; α = 2 × 10−5/MPa, β = 3 × 10−5/MPa,
S = 0.4, M = 1.25, εth = 0.003, c1 = 0.2, c2 = 7.5.

As illustrated in Fig. 8a, b, the present predicted stress–
strain responses match well with both experimental data for
composites under uniaxial and transverse tensile loading.The
theoretical predictions on the volume fraction of fiber rein-

123



Comput Mech (2017) 60:393–408 403

(a) 

(b) 

0

200

400

600

0 0.003 0.006 0.009

St
re

ss
 [

33
](

M
Pa

)

Strain [ 33]

Experiment

Prediction

0

200

400

600

0 0.003 0.006 0.009 0.012 0.015

St
re

ss
 [

11
](

M
Pa

)

Strain [ 11]

Experiment

Prediction

Fig. 8 Comparisons of present predicted stress–strain curves of fibrous
composites under a uniaxial and b transverse tensile loadings

forcement, debonded fiber, and micro-cracks under uniaxial
and transverse tensile loadings corresponding to Fig. 8a, b
are depicted in Fig. 9a, b, respectively. Interestingly, it is
observed that the predicted damage patterns and progressions
by the proposed approachwith theGAdepend strongly on the
loading conditions, illustrating realistic damage responses.
When uniaxial tensile loading is applied to the composites,
the debonding damage between the matrix and fibers evolves
smoothly, whereas a micro-crack occurs suddenly and sig-
nificantly (Fig. 9a). However, as observed from Fig. 9b, the
opposite trends to the previous case are predicted under trans-
verse tensile loading.

4.3 Comparative study with multiple experimental test
results

Herakovich [34] investigated the transverse tensile stress–
strain behaviors of a continuous BP–SiC fiber-reinforced

(a) 

(b) 

0

10

20

30

40

0 0.003 0.006 0.009

Vo
lu

m
e 

fr
ac

tio
n 

(%
)

Strain [ 33]

Fiber reinforcement
Debonded fiber
Micro-crack

0

10

20

30

40

50

0 0.003 0.006 0.009 0.012

Vo
lu

m
e 

fr
ac

tio
n 

(%
)

Strain [ 11]

Fiber reinforcement
Debonded fiber
Micro-crack

Fig. 9 The theoretical predictions of the volume fraction of fiber rein-
forcement, debonded fiber and micro-crack under a uniaxial and b
transverse tensile loading corresponding to Fig. 8a, b, respectively

Ti–6Al–4V matrix composite, and reported multiple test
results. We adopt the material properties of the composites
as follows [34]: Em = 110GPa, vm = 0.33; E f = 390GPa,
v f = 0.19, σy = 370MPa, φy = 34%. The estimated
model parameters based on the GA are: α = 2 × 10−6/MPa,
β = 3 × 10−6/MPa, S = 0.86, M = 1.05, εth = 0.004,
c1 = 0.126, c2 = 2.6. The comparison of the stress–strain
curves between present a theoretical prediction and various
experimental data for the samematerial composition [34] are
represented in Fig. 10a and the corresponding damage evo-
lution curves are given in Fig. 10b. Similar to the previous
comparisons, the predicted stress–strain behaviors and dam-
age trends are in good agreement with the experimental data.
Note that the unsmoothed curves in Figs. 8, 9 and 10 are due
to characteristics of the presentGAmethod. Each experimen-
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Fig. 10 a Comparison of stress–strain curves between present theo-
retical prediction and various experimental data for the same material
composition and b the corresponding damage evolution curves

tal result of stress–strain coordinates is programmed for a 1:1
comparison with the corresponding simulated predictions.

We further compare the present predictions based on the
proposed framework with multiple experimental test results
of PEEK composites containing different orientations of
AS4 carbon fiber [30]. The material properties and esti-
mated model parameters are as follows: Em = 6.14GPa,
vm = 0.356; E f = 214GPa, v f = 0.263, σy = 150MPa,
φy = 60%; α = 2/MPa, β = 3/MPa, S = 5.51, M = 0.37,
εth = 0.001, c1 = 0.157, c2 = 0.1. Figure 11a shows the
experimental comparison results, indicating that there is a
good correlation between the experimental data and the pre-
dictions considering various fiber orientations.

The performance of the proposed analytical model inte-
grated with the GA is analyzed statistically with a Monte
Carlo simulation (MCS) by randomly generating an initial
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Fig. 11 a Experimental comparisons with the present predictions of
AS4 carbon fiber/PEEK composites with various fiber orientations (θ)
and b boxplots of 100Monte Carlo simulation results of the correspond-
ing NRMSE calculated via GA

population of the chromosome. Boxplots of 100MCS results
are shown in Fig. 11b. As shown in the figure, the estimated
strain values are in good agreement with the experimental
results with less than 14.14% of NRMSE, indicating the pre-
dictive capability of the proposed analytical model integrated
with the GA.

Finally, the predicteduniaxial andbiaxial tensile responses
of the E-glass fiber-reinforced epoxy composites [±55]T
are compared with the stress–strain curves experimentally
obtained by Soden [37]. The material properties adopted
in the simulations are: Em = 2.6GPa, vm = 0.4; E f =
72.5GPa, v f = 0.22, φ f = 60%. The GA calibration
process is only carried out based on the uniaxial tensile
loading case, and the model parameters are estimated to be:
α = 2 × 10−7/MPa, β = 3 × 10−7/MPa, S = 9.79,M = 2,
εth = 0.014, c1 = 0.147, c2 = 5.9. It should be noted that the
same values estimated for the model parameters are applied
to the biaxial tensile loading cases.

Figure 12 shows comparisons between the present predic-
tion and experimental data [37] for the uniaxial and biaxial
tensile responses of ±55◦ laminate composites. In spite of
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Fig. 12 Comparisons between the predicted values and experimental
data for uniaxial and biaxial tensile responses of E-glass fiber-reinforced
epoxy composites

some gaps between the prediction and the experimental result
in the case of σ33–ε11 under biaxial tensile loading, the
predictions based on the proposed method match the exper-
imental results well.

5 Conclusions

This paper presents a modeling strategy that relies on
micromechanics and evolutionary computation to predict
the damage behaviors of fiber-reinforced composites. The
proposed framework, consisting of two methods, enables
precise and efficient prediction of fibrous composites, not
only with respect to external mechanical properties but inter-
nal failure mechanisms as well, including interfacial and
micro-crack damage. Unlike previous analytical studies that
have manually fitted the model parameters with experimen-
tal data, the present study introduces an advanced approach
for the efficient and precise prediction of fibrous compos-
ites. Although the different modeling techniques considered
here are based on different study backgrounds, they are
coupled in the present study by the constitutive damage
equation with several model parameters and the GA, while
considering human-induced error components for fibrous
composites.

It is shown that the model parameters of the proposed for-
mulation influence the present predictions. The upper and
lower bounds of each parameter are determined by refer-
ring to past research, and a numerical simulation which
is independently performed in this study. The developed
model is applied to various cases to predict the correspond-
ing mechanical properties and stress–strain responses. Then,
those predictions are compared with available experimental

data in the literature to verify the proposed formulation, and
were found to bewell correlates with the test results. Interest-
ingly, it is observed that the predicted damage patterns and
progressions produced by the proposed approach with the
GA depend strongly on the loading conditions, illustrating
realistic damage responses.

This study would focus on multi-scale/physics modeling
to obtain a clearer understanding of the changes in fibrous
composites under various exterior conditions. In spite of the
various validations conducted in this paper to ensure the
predictive capabilities of the proposed method, future study
should address the viscoelastic-related strain rate effects and
more extreme cases should be considered to obtain better
correlation between test conditions and composite composi-
tions. These issues are beyond the scope of the present work;
however, they should be considered in future work.

Appendix 1: The components of Eshelby’s tensor S2
and S3 in Eq. (2)

The components of the fourth-rank Eshelby’s tensors for the
debonded cylindrical fiber (phase 2) are given as [38]

S2 = 1

4 (1 − v0)

[
S(3)
I K δi jδkl + S(4)

I J

(
δikδ jl + δilδ jk

)]
(27)

in which

S(3)
11 = 1

2
(4v0 − 2) , S(3)

22 = S(3)
12 = S(3)

21 = S(3)
11 ,

S(3)
13 = 2v0, S(3)

23 = S(3)
13 , S(3)

31 = S(3)
32 = S(3)

33 = 0

S(4)
11 = 1

2
(3 − 4v0) , S(4)

22 = S(4)
12 = S(4)

21 = S(4)
11 ,

S(4)
13 = 1 − v0, S(4)

23 = S(4)
31 = S(4)

32 = S(4)
13 ,

S(4)
33 = 0 (28)

In addition, the Eshelby’s tensor S3 for the spherical micro-
crack void (phase 3) can be expressed as [38]

S3 = 1

15 (1 − v0)

[
S(5)δi jδkl + S(6) (δikδ jl + δilδ jk

)]
(29)

with

S(5) = 5v0 − 1, S(6) = 4 − 5v0 (30)

where v0 denotes the Poisson’s ratio of the matrix.
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Appendix 2: Parameters FIK
(1) and FIJ

(2) in Eq. (8)

The parameters of the fourth-rank tensor F are expressed as

F (1)
I K = φ1�

(1)
I K + φ2�

(3)
I K + φ3�

(5),

F (2)
I J = 1

2
+ φ1�

(2)
I J + φ2�

(4)
I J + φ3�

(6) (31)

in which

�
(2m−1)
I K = B(2m−1)

I K

1 − 2φm P(2m)
KK

+ B(2m)
I I Q(m)

I K

φm P(2m)
I I − 1

+
3∑

R=1

B(2m−1)
I R Q(m)

RK

2φm P(2m)
RR − 1

, m = 1, 2

�
(2m)
I J = B(2m)

I J
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(
1

1 − 2φm P(2m)
I J

+ 1

1 − 2φm P(2m)
J I

)
, m = 1, 2

�(5) = 1

3

{
2B(6)

2φ3P(6) − 1
+ 3B(5) + 2B(6)

1 − φ3
(
3P(5) + 2P(6)

)
}

,

�(6) = B(6)

1 − 2φ3P(6)
(32)

with
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I3

⎫⎪⎬
⎪⎭

=

⎡
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(
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11 + 2P(2m)

11

)
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(
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In addition, the parameters PI K (1) and PI J (2) in Eq. (33)
are given by

PI K
(2m−1) = 2S(2m−1)

I K B(2m)
KK + 2S(2m)

I I B(2m−1)
I K
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J I
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with

λ̄ = λ0μ1 − λ1μ0

(μ1 − μ0) {3 (λ1 − λ0) + 2 (μ1 − μ0)} ,

μ̄ = μ0

2 (μ1 − μ0)
(38)

where the constants λq and μq (q = 1, 2) signify the Láme
constant and shear modulus of the matrix and fiber, respec-
tively.

Appendix 3: Parameters of the effective stiffness in
Eq. (14)

The components of the effective stiffness of the fibrous com-
posites considering the fiber orientation (θ ) read [22]
1st row:

C̄11 = c4
(
C (1)
11 + 2C (2)

11

)
+ c2s2

(
C (1)
13 + C (1)

31 + 4C (2)
13

)

+ s4
(
C (1)
33 + 2C (2)

33

)
, C̄12 = c2C (1)

12 + s2C (1)
32 ,

C̄13 = c4C (1)
13 + c2s2

(
C (1)
11 + C (1)

33 + 2C (2)
11

+ 2C (2)
33 − 4C (2)

13

)
+ s4C (1)

31 ,

C̄15 = cs
{
c2
(
−C (1)

11 + C (1)
13 − 2C (2)

11 + 2C (2)
13

)

+ s2
(
−C (1)

31 + C (1)
33 + 2C (2)

33 − 2C (2)
13

)}
(39)

2nd row:

C̄21 = c2C (1)
21 + s2C (1)

23 , C̄22 = C (1)
22 + 2C (2)

22 ,

C̄23 = c2C (1)
23 + s2C (1)

21 , C̄25 = cs
(
C (1)
23 − C (1)

21

)
(40)

3rd row:

C̄31 = c4C(1)
31 + c2s2

(
C(1)
11 + C(1)

33 + 2C(2)
11 + 2C(2)

33 − 4C(2)
13

)

+ s4C(1)
13 , C̄32 = c2C(1)

32 + s2C(1)
12 ,

C̄33 = c4
(
C(1)
33 + 2C(2)

33

)
+ c2s2

(
C(1)
13 + C(1)

31 + 4C(2)
13

)

+ s4
(
C(1)
11 + 2C(2)

11

)
,

C̄35 = cs
{
c2
(
−C(1)

31 + C(1)
33 + 2C(2)

33 − 2C(2)
13

)

+ s2
(
−C(1)

11 + C(1)
13 − 2C(2)

11 + 2C(2)
13

)}
(41)

4th row:

C̄44 = c2C (2)
23 + s2C (2)

12 , C̄44 = c2C (2)
23 + s2C (2)

12 ,

C̄46 = cs
(
C (2)
23 − C (2)

12

)
(42)

5th row:

C̄51 = cs
{
c2
(
−C (1)

11 + C (1)
31 − 2C (2)

11 + 2C (2)
13

)

+ s2
(
−C (1)

13 + C (1)
33 + 2C (2)

33 − 2C (2)
13

)}
,

C̄52 = cs
(
C (1)
32 − C (1)

12

)
,

C̄53 = cs
{
c2
(
−C (1)

13 + C (1)
33 + 2C (2)

33 − 2C (2)
13

)

+ s2
(
−C (1)

11 + C (1)
31 − 2C (2)

11 + 2C (2)
13

)}
,

C̄55 =
(
c4 + s4

)
C (2)
13 + c2s2

(
C (1)
11 − C (1)

13 − C (1)
31

+C (1)
33 + 2C (2)

11 + 2C (2)
33 − 2C (2)

13

)
(43)

6th row:

C̄64 = cs
(
C (2)
23 − C (2)

12

)
, C̄66 = c2C (2)

12 + s2C (2)
23 (44)

where c and s denote the cos θ and sin θ , respectively.
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