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Abstract: Herein, we investigated the synergistic effect of multi-walled carbon nanotube (MWCNT)
and carbon fiber (CF) hybrid fillers on electrical and mechanical characteristics of alkali-activated slag
(AAS) composites. Many studies on AAS composites have been conducted in the past; however, not
much progress has been made regarding characteristics of AAS composites with hybrid conductive
fillers. The specimens with different mix proportions were fabricated in the present study, and
numerous material characteristics, including flowability, electrical resistivity, and compressive strength
of AAS composites were measured. In addition, the synergistic effects were investigated through
scanning electron microscopy and thermogravimetric analysis. It was found that the 0.5 wt.% of
MWCNTs and CFs lead the effects of the bridging and reducing crack propagation, thereby improving
its electrical and mechanical performances. The filler exceeding a percolation point improved the
electrical performance of the AAS composites; however, it interfered with the hydration process
during the curing period, and caused a decrease in compressive strength of AAS composites.
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1. Introduction

Climate change due to industrial development and an increase in greenhouse gas emissions
is considered a critical problem, and global efforts are focused on researching and preparing
countermeasures [1]. The increase of greenhouse gases in the atmosphere can bring numerous
climate changes, such as rising temperatures, changing ecosystems, and increasing natural disasters.
Thus, the United Nations Framework Convention on Climate Change (UNFCCC) has tried to reduce
greenhouse gases to prevent abnormal climate phenomena.

Portland cement has been used most widely on construction fields. However, it produces a large
amount of carbon dioxide (CO2) emissions, which is about 8% of global greenhouse gas emissions [2].
As the need for CO2 reduction has emerged, as above, research on replacing Portland cement is
actively being conducted worldwide with industrial by-products, such as alkali-activated cement [3–5].
The utilization of alkali-activated cement is expected to reduce CO2 emissions through recycling of
industrial by-products, along with distinct advantages distinguished from Portland cement, such as
reducing heat of hydration, rapid strength development, and remarkable chemical resistance.

On the other hand, recent studies that give functionality to existing construction materials are
being actively conducted [6–9]. Construction materials where carbon-based fillers (e.g., multi-walled
carbon nanotubes (MWCNTs), carbon black, graphene, and carbon fibers (CFs)) are properly dispersed
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can improve electrical and mechanical properties, which are expected to be applied to future smart
structures. The representative examples of application studies of functional composite materials
include self-heating, thermal insulation, electromagnetic wave shielding, and monitoring [10–13].
Furthermore, energy harvesting studies, such as piezoelectric and thermoelectric, are also actively
conducted in recent years in line with future demand [14,15].

In this study, MWCNTs and CFs incorporated alkali-activated slag (AAS) composites were
fabricated and investigated for verifying electrical and mechanical properties. Many studies on AAS
composites have been conducted in the past [16–20]. However, not much progress has been made
regarding characteristics of AAS composites with hybrid conductive fillers. Herein, the AAS composites
used in the experiment produced the various contents of the MWCNTs and CFs. The fluidity value,
electric resistivity, and compressive strength were measured with the related adequate standards. In
addition, the internal structures and chemical properties were investigated through scanning electron
microscopy (SEM) and thermogravimetric analysis (TGA).

2. Materials and Methods

2.1. Raw Materials

The chemical compositions of ground granulated blast-furnace slag (GGBS; Hyundai Steel Co.,
Ltd., Seoul, Korea) and Class-F type fly ash (Hadong thermal power plant operated by Korea Southern
Power Co., Ltd., Republic of Korea) used in this study as binder material were measured by X
fluorescent spectrometry (XRF) and summarized in Table 1. In addition, Table 2 lists the mix proportion
of alkaline solution used in the present study. An alkali activator was obtained by blending sodium
hydroxide pellets (Duksan Chemicals Co., Ansan, Korea), sodium silicate solution (Duksan Chemicals
Co., Ansan, Korea; Na2O: 9.2%, SiO2: 33.3%, H2O: 57.5%), and water. Silicate modulus of 1.1 (Ms = ratio
of SiO2/Na2O) was selected because the Ms of 1.1 is general value in terms of physical properties,
such as mechanical, flowability, and setting time [7–9,21–23]. MWCNTs (Jeno Tube 8 ©, JEIO Co.,
Ltd., Ansan, Korea) with a purity level of 98.5% and PAN-based CFs (ACE &Tech, Ltd., Youngju,
Korea) were used to prepare an electrically conductive specimen [24,25]. The length and diameter of
MWCNTs were 100–200 µm and 7–9 nm, respectively, and those of PAN-based CFs were 5 mm and
6 µm, respectively.

Table 1. Chemical compositions of the ground granulated blast-furnace slag (GGBS) and fly ash
obtained by X-ray fluorescence (wt.%).

CaO SiO2 Al2O3 Fe2O3 MgO Na2O K2O SO3 TiO2 Mn2O3 SrO LOI *

Fly ash 4.8 57.0 21.0 10.0 1.3 - 1.4 1.0 1.5 - - 2.7
Slag 44.8 33.5 13.7 0.5 2.9 0.2 0.5 1.7 0.5 0.2 0.1 1.4

* LOI: Limiting oxygen index.

Table 2. Mix proportion of alkaline activator used in the present study (g).

Ms
(SiO2/Na2O) Water Sodium Hydroxide

(NaOH)
Sodium Silicate

(Na2SiO3)

1.1 1000 160 580

2.2. Experimental Details

Table 3 lists the mix proportion of AAS composites. To investigate the synergistic effect between
nano and micro fillers, MWCNTs and CFs were simultaneously used in this study. The contents of
MWCNTs and CFs used for preparing the AAS composites varied from 0.0% to 2.0% and 0.0% to 1.0%
in weight of cement. In all specimen, the activator/binder ratio was selected in accordance with the
flow value, which corresponded to 105 ± 5 mm.
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Table 3. Mix proportion of electrified alkali-activated slag mortar to be used for the present study
(wt.%).

Specimen Slag Fly Ash CF MWCNT Alkali Activator Flow (mm)

F0N0

50 50

0.0

0.0 45

105 ± 5

F0N1 0.1 50
F0N5 0.5 52.5

F0N10 1.0 62.5
F0N20 2.0 75
F5N0

0.5

0.0 45
F5N1 0.1 50
F5N5 0.5 52.5

F5N10 1.0 62.5
F5N20 2.0 75
F10N0

1.0

0.0 45
F10N1 0.1 50
F10N5 0.5 52.5
F10N10 1.0 62.5
F10N20 2.0 75

The various mixes of AAS composites were prepared from GGBS and fly ash binders by varying
contents. The method of producing AAS composite is as follows: Initially, dry mixture was prepared
by mixing GGBS, fly ash, MWCNTs, and CFs. The MWCNTs were dry-mixed into the binder by 0,
0.1, 0.5, 1.0, and 2.0% in terms of the weight of the binder material (slag + fly ash) before mixing with
water. The CFs were also mixed with the binder by 0, 0.5, and 1.0 wt.% in the dry state. Secondly,
sodium silicate and sodium hydroxide pellet were mixed to induce a chemical reaction of the binder
material. Thus, an alkali activator corresponding to silicate modulus 1.1 was prepared. Third, the
alkali activator was added into a dry mixture and mechanically mixed for 5 min by using mortar
mixer (HJ-1150, Heungjin Testing Machine Co., Ltd., Gimpo, Korea) until a homogeneous mixture was
obtained. The alkali activator was used for the target flow of AAS specimens (105 ± 5); therefore, the
amount varies slightly for each specimen. Fourth, the mold was filled with mortar mixture and has a
25 × 25 × 25 mm3 cubic size. After casting, the specimens were sealed with plastic wrap to prevent the
evaporation of moisture and were stored in a curing chamber at a controlled temperature of 20 ◦C for
24 h. Finally, they were dried at an atmosphere condition with plastic wrap to prevent the evaporation
of moisture for 3 days. After 3 days, each specimen was then dried in an oven at 60 ◦C for an additional
25 days. The size and approximate composition of the fabricated specimen are illustrated in Figure 1.
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Figure 1. (a) Image of the alkali-activated slag (AAS) composite used in this study and (b) layout of
the AAS composite specimen containing both multi-walled carbon nanotubes (MWCNTs) and carbon
fibers (CFs).
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The mix proportion in Table 3 was designed by setting the flow to the same value in consideration
of the field applicability and low electrical resistivity of the specimen. However, the hardened structure
and properties of alkali-activated materials are quite sensitive to the amount and composition of the
activator, therefore, the proposed formulation is considered to have limitations in the analysis of
the mechanisms.

2.3. Characterizations

To analyze the electrical resistance of the AAS composite, 2-probe digital multimeter (FLUKE-116,
Fluke Co., Everett, WA, USA) was employed. Then, measured resistance was converted as following
equation:

ρ = R·
A
L

(1)

where ρ, R, L, and A denote the electrical resistivity and the electrical resistance, spacing between the
silver paste, and cross-sectional area (mm2) of silver paste applied with the specimens, respectively.
A universal testing machine (UTM; HST-200CS, Hanshin Kumpung Inc., Cheongju, Korea) with a load
cell of 2000 kN was utilized to analysis the compressive strength of AAS composites. The compressive
test was conducted according to ASTM C 109 with a velocity of 0.01 mm/s. Thermogravimetric analysis
(TGA) was performed using a TA instruments TGA Q50. Samples for the thermogravimetric analyses
(TGA) were powdered. The heating rate was set at 10 ◦C/min between 30 and 800 in nitrogen (N2)
environment. A microstructural analysis was characterized by means of SEM (Ultra Plus, ZEISS,
Oberkochen, Germany). The samples for SEM analysis were used fragments after compressive strength
test. To obtain the definite resolution of AAS composite, the samples were coated with platinum.

Five specimens for each formulation were made to perform the material characterization tests.
The electrical resistivity measurement of the specimens was performed 3–28 days, and the compressive
strength was measured on the 28th day. In all experiments, the average value was recorded, except for
the highest and lowest values. The analyses of SEM and TG/derivative TG (DTG) were performed
using the specimen fragments after the compressive strength experiment was carried out.

3. Results and Discussion

3.1. Fluidity Characteristic

Figure 2 presents fluidity of each specimen manufactured according to the mix proportion.
The flowability test of fresh-state mixtures was carried out based on the specification provided in the
ASTM C 1437. As the amount of MWCNTs increased, the fluidity of all specimens decreased, and
this phenomenon was remarkable as the amount of MWCNTs increased. However, regardless of the
presence or not of CFs, the flow characteristics of each specimen were similar. Hence, it is considered
that the influence of the CFs content on the flow was insignificant.Crystals 2020, 10, x FOR PEER REVIEW 5 of 10 
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As mentioned in previous literatures [9,23], the electrical conductivity properties of the cement
composite incorporating MWCNTs are dependent on the fluidity of the paste, and it was reported that
the resistance of the material decreases when the flowability decreases in general [9]. In addition, the
average fluidity value of the specimen was fixed at 105 ± 5 mm, based on the previous study that the
dispersion of the MWCNTs filler was greatly limited when the fluidity exceeded 120 mm.

3.2. Electrical Resistivity

The measured electrical resistivity of the AAS composite is summarized in Figure 3. Overall,
increasing of MWCNTs content causes a reduction of electrical resistivity. For the MWCNTs, the
addition of more than 0.5 wt.%, known as the percolation threshold of the nanofiller-incorporated
cementitious composite, the range of resistivity reduction was dramatically reduced. For the specimens
containing both MWCNTs and CFs, it can be observed in Figure 3b,c that the electrical characteristics
of the AAS composites significantly improved. In particular, in the curing age of 28 days, the electrical
resistivity value of specimen with CFs of 0.5 wt.% considerably decreased compared to the specimen
with no CF additive. The reduction of electrical resistivity value was caused by the bridge phenomenon
of the conductive pathway between MWCNTs and CFs.Crystals 2020, 10, x FOR PEER REVIEW 6 of 10 
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Figure 3. Electrical resistivity results of MWCNTs-incorporated AAS composites with (a) 0 wt.%,
(b) 0.5 wt.%, and (c) 1.0 wt.% of CF according to the curing days.

3.3. Compressive Strength

The compressive strength results of AAS composite are summarized in Figure 4. As a result, the
increase of MWCNTs content was a decreased compressive strength of AAS composite, regardless of
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the CFs contents. However, the strength of AAS composite with MWCNTs 0.0 wt.%, i.e., the specimen
containing only CFs, was slightly increased with the increase of CFs content. When the cracks reach
the CFs, the crack propagates through the connection between fiber and the AAS matrix. In other
words, the crack is deflected depending on the interaction of the branched crack and fiber.
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Figure 4. Compressive strength results of CF filler-incorporated AAS composites with (a) 0 wt.%,
(b) 0.5 wt.%, and (c) 1.0 wt.% of CF.

The compressive strength slightly increased while the MWCNTs content rose from 0.0 to 0.5 wt.%,
as shown in Figure 4b. Such an increase in compressive strength caused by the addition of nanofiller
possibly attributed to the interaction between filler and matrix, which can happen when MWCNTs
have good dispersibility. Moreover, it is verified that MWCNTs in that specimen were well dispersed
in a range of 0.0 to 0.5 wt.%. However, when MWCNTs were added in excess of the 0.5 wt.%, the
strength decreased significantly, as shown in Figure 4b,c. It was caused by agglomeration of MWCNTs
filler, generated when nanofiller of an excessive amount more than the percolation threshold value
(>0.5 wt.%) was added.

3.4. Synergistic Effect of MWCNTs and CFs Hybrid Fillers

SEM micrographs of AAS composite incorporating MWCNTs and CFs are presented in Figure 5.
The representative hydrate products of AAS, calcium alumina silicate hydrate (CASH), can be seen
in Figure 5a. Figure 5b shows agglomerated MWCNTs observed in the F0N10 specimen [24]. An
excessive content of MWCNTs interfered with the uniform dispersion of the filler inside the AAS
binder, leading the MWCNTs agglomeration, was observed. In addition, there was a large number
of small-sized pores existing inside the MWCNTs agglomeration. It is believed that these pores are
susceptible to deformation due to hydrate formation and cause high resistance change over time
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(Figure 3a) [21,26]. These pores adversely affect the hydration of the AAS binder and negatively affect
the compressive strength (Figure 4).

Meanwhile, Figure 5c shows the SEM image of the CFs distributed within the AAS binder. Unlike
the MWCNT, CF, which is a macro size, could not find an aggregation phenomenon, and it was properly
dispersed. The contact phenomenon between MWCNTs and CFs filler is shown in Figure 5d. It is
believed that the connection of two fillers causes a bridging effect in a AAS matrix, and it induces the
formation of uniform conductive network [22]. The electrically conductive path of the AAS composites
is susceptible to damage due to hydration and external impact, which in turn causes instability of
electrical properties. The combination of MWCNTs and CFs filler implements nano- and micro-sized
multiscale conductive pathways, and enables more stable and improved electrical properties. It is
concluded that the small change in resistivity, over time, of the specimens containing CFs, is due to
this bridging effect (shown in Figure 3) [22].
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The TG and the derivative TG (DTG) results of the AAS composite are shown in Figure 6. Herein,
only specimens for F0N0, F0N10, F10N0, and F10N10 were analyzed to investigate the effect of
MWCNTs and CFs on the AAS composites. All samples clearly showed DTG peaks at the ranges of
100–200 ◦C and 450–600 ◦C. The weight loss hump seen over a temperature below 200 ◦C is due to the
evaporation of free and physically attached water molecules from the binder gel [27]. Incorporating
MWCNTs or CFs led to a notable increase in the weight loss below 200 ◦C, indicating a higher degree
of hydration in these samples. This can be attributed to the filler effect, which enhances reaction of raw
materials [23,28,29].
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4. Conclusions

In the present study, the various characteristics of hybrid filler-incorporated AAS composites
were studied. The specimens with different mix proportions were fabricated in the present study,
and MWCNTs and CFs content were designed based on a previous study. The AAS composites were
characterized through the flowability, electrical, and mechanical property tests, and were investigated
via microstructural analysis. The main findings in this study can be summarized as: (1) the added
MWCNTs absorbed the water molecules inside the AAS binder, and ultimately reduced the initial
flowability of the AAS composites; and (2) overall specimen; reduction of electrical resistivity arose
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the bridging effect and significantly reduces the electrical resistivity. In order to analyze the mechanical
properties more precisely, the measurement of porosity should be additionally performed. However,
due to the limitations of the research environment, the experimental results were not included in
this paper.

Overall, it was found that the 0.5 wt.% of MWCNTs and CFs lead the effects of the bridging
and reducing crack propagation, thereby improving its electrical and mechanical performances.
The filler, exceeding a percolation point, improved the electrical performance of the AAS composites.
The proposed study aimed to evaluate the mechanical and electrical properties of AAC by mixing
MWCNTs and CFs. In order to match the flow value, different amounts of activators were utilized
for each formulation. However, it acted as a factor, leading difficulties in analyzing the effect of the
conductive fillers on the composites. It is an experimental limitation of the present research, and future
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