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Abstract: Conventional pervious pavement materials (PPM) that consist of cement and aggregate

materials are known for poor durability due to their brittle behavior. Thus, to enhance the durability,

we fabricated polymeric PPMs from durable and abundant polyurethane (PU) and undertook

mechanical and microscopic characterizations. PU-based PPM samples with varying aggregate sizes

were produced and examined to test their compressive strength and water permeability. Furthermore,

X-ray micro-computed tomography (micro-CT) was implemented to analyze the samples’ pore and

tortuosity characteristics. Through the micro-CT analysis, the morphological characteristics of PPM’s

internal structures were identified and quantitively analyzed the correlations between the pore size

distribution, connectivity, and tortuosity within the samples. Finally, the microstructures derived

from micro-CT were generated as a finite element model and also numerically determined the stress

distribution generated inside.

Keywords: pervious pavement; polyurethane binder; micro-CT analysis; mechanical properties;

microscopic characteristics

1. Introduction

With regard to recent climate change technologies, the permeable function of pavement
materials is gradually becoming more important to maintain material performance capa-
bilities and improve urban environments [1,2]. The main benefit of permeable pavements
is their ability to transport water through their structures, which prevents environmental
damage caused by stormwater runoff or flooding [3]. Other environmental benefits of the
permeable pavement include the ability to reduce urban heat island effects and prevent
the penetration of harmful pollutants into the groundwater [4]. Construction pavement
exposed to the outside air frequently undergoes expansion and contraction due to heating
and cooling by weather, which can reduce the durability of these materials and lead to
unpredictable accidents [5]. Abnormal climate change also quickly brings various defects,
such as surface ripples, fractures, and cracks into pavement materials, ultimately increasing
maintenance costs significantly [6].

In particular, the main surface wearing courses of concrete and asphalt roads undergo
considerable temperature changes due to their high heat capacity and heat absorption
rate [7]. Therefore, required repairs of construction pavement materials tend to increase
significantly during the thawing season (January–March in Korea). In addition, pavement
in which water permeation does not occur quickly is associated with many accidents
caused by the freezing of roads in winter [8], as freezing on the road surface is generally
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difficult for drivers or pedestrians to recognize, and a low coefficient of friction increases
the braking distance. Accordingly, several studies have been conducted in an effort to
increase the permeability and durability of existing construction paving materials in order
to improve urban sustainability and safety.

Li et al. [9] proposed a high-strength pervious type of concrete created with reactive
powder concrete (RPC). It was experimentally proved that compressive strength and
water permeability increase greatly when an amount of RPC is properly mixed with
conventional pervious concrete. The authors also developed a precast design to increase
the efficiency of the drainage system and prevent clogging. Pervious pavement blocks
composed of bio-treated recycled aggregate were also investigated by Liu et al. [10]. A
microbially induced calcium carbonate precipitation (MICP) process was introduced, and
it was absorbed into the aggregate and dissolved in the mixing water. In both cases,
the results showed an improvement in the mechanical properties of pervious pavement
blocks, but the performance improvement was more pronounced when MICP was applied
directly to water. In addition, various studies have been conducted in which byproduct
aggregates or recycled aggregates are applied as components of permeable materials.
Zaetang et al. [11] fabricated a specimen in which aggregates of pervious material were
replaced with recycled aggregate and compared their mechanical properties. As a result,
there was no significant effect on the tensile and compressive strength, but a significant
improvement was observed in the compressive strength. It is presumed that the inherent
adhesive properties between natural and recycled aggregates lead the experimental results,
which is due to the difference in chemical composition among the aggregates [12]. It was
noted that the amount of voids and the water permeability of the pervious specimens were
greatly affected by the replacement ratio of byproduct aggregate [13].

When there are numerous voids in a material, the internal stress becomes concentrated
around the voids, resulting in more rapid material destruction. Particularly, brittle mate-
rials undergo a remarkable reduction in their mechanical properties due to voids owing
to their low tensile strength [14–16]. To address this issue, various studies of permeable
pavement with an added polymer have been conducted. Huang et al. [17] conducted a
laboratory experiment to improve the strength properties of pervious concrete through
the incorporation of a latex polymer. Through their research, it was found that when
natural sand and fibers are mixed into latex-incorporated pervious concrete, the water
permeability is slightly reduced but the compressive and tensile strength levels are sig-
nificantly improved. Giustozzi [18] applied four types of polymers (styrene-butadiene
copolymer, vinyl-acetate homopolymer, ethylene vinyl-acetate copolymer, and styrene-
butadiene copolymer) to permeable concrete and compared their effects on the formation of
voids and the mechanical properties, finding that polymer materials were not very helpful
when used to enhance the water permeability of pervious materials. However, they were
confirmed to be capable of effectively improving the flexural strength, stiffness, and dura-
bility. Furthermore, non-destructive test (NDT) research to analyze the effects of internal
voids in pavement materials on cracking and durability has been actively conducted in
recent years [19–23].

2. Aim and Objectives

In the present study, a polyurethane (PU)-based pervious pavement material (PPM)
was fabricated and examined by mechanical and microscopic characterizations. PU ma-
terials are widely used in the construction industry at present given their low cost and
stable properties. In particular, the high tensile strength of PU is expected to lead to vari-
ous performance improvements, including better durability and constructability [24–26].
PU-based PPM with varying aggregate sizes was produced and the compressive strength
and permeability of each specimen were measured. The pore and tortuosity characteristics
of the specimens were analyzed through X-ray micro-computed tomography (micro-CT).
From the micro-CT analysis, the morphological characteristics of the internal structures
of PPM were identified. In particular, the correlations between the pore size distribution,
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connectivity, and tortuosity within the specimen were quantitatively analyzed. The mi-
crostructures as determined by the micro-CT analysis were reconstructed as a finite element
model, and the stress distribution generated inside was numerically ascertained.

3. Methods

3.1. Materials and Specimens

In this study, the initial mix ratio of the polyurethane was determined by considering
previous studies that focused on PPM. Metamorphic rock (quartzite) aggregates in four
different size ranges were considered for the manufacturing of the test specimens. Based
on Korean standards, aggregates #2, 3, 6, and 8 were applied, as listed in Table 1. The
sizes of aggregates #2, 3, 6, and 8 were 40–65, 25–50, 5–40, and 2.5–10 mm, respectively.
Figure 1 shows the four different types of aggregates adopted in this study. A smaller
number in the name of the aggregate indicates a larger and coarser aggregate size. The
chemical composition of utilized aggregate was analyzed through the X-ray fluorescence
spectrometric analysis, as shown in Table 1.

Table 1. The chemical composition of utilized aggregate (KS E 3076).

Chemical Composition SiO2 Al2O3 TiO2 Fe2O3

Concentration (wt.%) 94.8 2.31 0.06 0.98

Figure 1. The appearances (a–d) and distribution curve (e) of the aggregates applied to the specimen.

The mix ratio of each specimen was based on the amount of aggregate #2 used
in the specimen and the labels for the specimens were derived by the weight ratio of
aggregate #2. For instance, specimen G33 signified that the weight of aggregate #2 out
of the total weight of the specimen was 33%, with the weight ratio of the polyurethane
binder set to 9%. Likewise, a total of 4 cases were designed and produced in this study
to clarify the effect of mix composition, such as G47, G60, and G72 according to the
amount of #2 aggregates. Figure 1a–d shows the appearances of each aggregate (#2, 3, 6
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and 8) applied to the specimen. The distribution curve of the aggregates is also shown in
Figure 1e [27]. The polyurethane used here consisted of a resin (HS-S100A, Hanseo Polymer
Inc., Cheonan, Korea) and a hardener (HS-S100B©, Hanseo Polymer Inc., Cheonan, Korea)
The weight ratio of the resin and hardener was 1:2.36. The ratio of resin and hardener of
the polyurethane binder was determined by the manufacturer’s recommendation. In the
present study, we intended to analyze the material mechanism of the pervious material
according to the particle size of the aggregate with the B/A fixed. Experiments with
different variables may result in more varied results, but it was judged that it might confuse
the analysis of the phenomenon.

The specimens were manufactured via the following procedure: the coarse aggregates
were combined depending on the mix ratio shown in Table 2 and blended for three minutes
using a handheld mixer. In another container, the polyurethane resin and hardener were
combined and blended for one minute. The blended polyurethane binder was poured into
the container holding the blended coarse aggregates and mixed for another five minutes.
The mixture was poured into a cylindrical concrete mold with a corresponding radius
and height of 100 and 200 mm (φ100 × 200) and was then compacted. The cylindrical
mold was demolded after being kept at room temperature for three days. Subsequently,
the specimen was cured at room temperature for another seven days and was used for
the compressive and water permeability tests. For the water permeability test, the test
specimen was prepared by cutting the specimen into thirds horizontally. Figure 2 shows
the appearance of the specimens fabricated for each formulation.

Table 2. Mix ratio of the polyurethane-based PPM.

Specimen
Weight Ratio of Aggregate (wt.%) 1

B/A 2

#2 #3 #6 #8

G33 0.33 0.33 0.33 0.00

0.09
G47 0.47 0.27 0.27 0.00
G60 0.60 0.20 0.20 0.00
G72 0.72 0.18 - 0.09

1 Range of aggregate size: #2 = 2–5 mm, #3 = 1–2 mm, #6 = 0.2–0.4 mm, #8 = 0.1 mm or less. 2 Weight ratio of

binder to aggregate (B/A). The weight ratio of the resin and hardener of PU is 1:2.36.

Figure 2. Fabricated test specimens for the (top) water permeability and (bottom) compressive

strength tests: (a) G33, (b) G47, (c) G60, and (d) G72.

3.2. Characterizations

Figure 3 shows the test setup for the compression tests and the water permeability
tests conducted as part of this study. The compression test was carried out following ASTM
C 39 standards and was conducted using a universal material testing machine (UTM)
with a loading rate of 1 mm/min [28]. Three specimens of each mixture were made and
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used to monitor the compressive behavior. The compressive strength was calculated by
averaging the test results from the three test cases. In contrast, the water permeability test
was conducted on pieces of a test specimen that had been cut horizontally into thirds and
placed on two rods. Then, water was poured over top of each piece of the test specimen.
Note that the water permeability test was not conducted in accordance with the standards
but was conducted in consideration of field applicability. The field application thickness
of the pervious pavement materials developed in this study is expected to be 20–30 cm.
Therefore, only the assessment was made on whether water passed through a pervious
material of height for one-third of the compressive strength specimen. The amount of water
passing through the specimens was not quantitatively measured in this study.

Figure 3. Experimental setup of (a) the compressive strength and (b) the water permeability test.

In addition to the experimental approaches, micro-CT was also adopted to inves-
tigate the microstructural features of the specimens. Figure 4 shows the representative
micro-CT imaging procedure of the G33 specimen. From the micro-CT measurement, the
reconstructed image shown in Figure 4a was obtained. For the measurement, SkyScan1173
(Bruker, Billika, MA, USA) was used, and the measurement conditions were 130 kV and
61 mA. The cubic samples with 50 mm of edge length were used, and the reconstructed
image is composed of 512 × 512 pixels with a pixel size of 146 µm, sufficient for the iden-
tification of pores within the produced specimens. For a more effective investigation, a
region of interest (ROI) was selected from the original (reconstructed) image. The region
of interest (ROI) image in Figure 4b is described as having 300 pixels along the edge with
a pixel size identical to that in the original image. The reconstructed and the ROI images
are 8-bit grayscale images represented by 256 values (0–255). From these grayscale im-
ages, the specific components of the target material can be segmented and utilized for a
detailed analysis.

Given that the pore characteristics are the most critical when determining the prop-
erties of pervious materials, a binary image to describe the pore region was generated,
as shown in Figure 4c. To segment the pore region from the original image, a proper
threshold must be selected, and the modified Otsu method [29] was used here. In the
binary image, white represents the pores within the specimen. A 3D volumetric image
of the pores can then be obtained by the subsequent staking of a series of binary images,
as shown in Figure 4d. The 3D volume of pores was used to investigate the quantitative
pore characteristics of the specimens, in this case the porosity; this measure can also be
utilized to examine the material properties using a numerical approach. The porosity was
computed as the number of pore voxels compared to the 3D volume of the specimen, and
only pores larger than 146 µm according to the image resolution were considered in the
porosity analysis.
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Figure 4. Micro-CT imaging process: (a) the original reconstructed image, (b) ROI image, (c) binary image,

and (d) 3D volume image (Note: in (c,d), the white region represents the pores within the specimen).

In addition to the porosity, which is an index by which to examine the quantitative
pore characteristics, a parameter to evaluate the geometrical characteristics of the pore
distribution is needed for a more detailed investigation of the specimens. For this purpose,
tortuosity, an index that describes the curvature of a pore path, was adopted in this
study. Tortuosity has been widely used to characterize the percolation characteristics of
cement-based materials [30–33]. With the tortuosity investigation, the heterogeneity and
connectivity of the pores within the porous specimens could be effectively described [34].
Tortuosity, denoted by τ, is defined as the ratio between the lengths of the actual path and
the shortest path, as follows:

τ = Lact/Lshort (1)

In Equation (1), Lact denotes the actual distance between two end points of a pore chan-
nel considering obstacles, while Lshort is the shortest length between the two end points.

To compute the actual distance (Lact), the A-star algorithm, a method capable of
finding the minimum path between the selected starting and end points, was used [35].
Figure 5 shows a schematic of the A-star algorithm. This algorithm is composed of two
parts: the actual path from the starting and a temporary point (A(t)), and the heuristic
cost (H(t)) computed as the sum of vertical and horizontal routes between the temporary
and the end points. The latter procedure is also called the Manhattan distance. The total
cost (T(t)) was then calculated by adding A(t) and H(t). The computation of the total cost
was repeated by moving the temporary point from the starting to the end points. The
tortuosity values of the produced specimens were examined using the 3D volume image in
each case, and the permeable characteristics of the specimens were discussed based on the
tortuosity trends.
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Figure 5. Schematic of the A-star algorithm (Note: A(t) is the actual distance between the starting

point and a temporary point, and H(t) represents the heuristic path between the temporary and

the end points at an iteration t. The total cost (T(t)) can be obtained by combining the actual and

heuristic paths.).

With the obtained micro-CT data, the mechanical behavior of the specimens was also
numerically investigated. Figure 6a shows a schematic of the analysis configuration con-
sidered in this study. The geometric configuration was extracted from the CT examination
and converted to the ABAQUS format. The specimen was made of polyurethane-based
PPM and contained internal and external pores throughout. The specimen had a height,
width, and length of 43.3 mm, as indicated in this figure. The specimen was placed on
the support and vertical displacement was applied for the compression test. Herein, the
support and displacement plate were omitted in the finite element model by applying the
displacement to the surface of the specimen directly.

Figure 6b presents the finite element model used for the analysis configuration. In this
study, four types of specimens were considered, and this figure shows the typical case of
specimen G33. This specimen was modeled using three-dimensional uniform hexahedral
elements with a reduced integral point, with the pores left as empty spaces [36,37]. The
numbers of elements used in specimens G33, G47, G60, and G72 were 801,947, 792,134,
749,337, and 701,929, respectively. Here, the number of elements for case 1, case 2, case 3,
and case 4 were varied since the volume of pores in each specimen differed. It is assumed
that each specimen responded to the compressive load in an elastoplastic manner [37].

Figure 6. (a) FE-based simulation configuration and (b) the representative FE modeling

(specimen G33).
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4. Results and Discussion

4.1. Mechanical and Permeability Results

Table 3 presents the compression test results. While the compressive strengths for
specimens G33, G47, and G60 were comparable to each other, the strength for specimen G72
was significantly low. The results from the water permeability tests in Table 3 showed that
water drained through specimens G60 and G72, while specimens G33 and G47 absorbed
water. It is thought that the size of aggregates and the combination of the aggregates
affected the compressive strength and water permeability, as influenced by the connectivity
between the internal pores in each specimen.

Table 3. Compressive strength and water permeability of the specimen.

Specimens

G33 G47 G60 G72

Compressive strength (MPa) 7.8 ± 0.31 8.0 ± 0.97 7.2 ± 1.03 3.5 ± 0.74
Water permeability X X O O

While concrete materials that are made with a coarse aggregate usually have low
connectivity, which results in low strength, the compressive strength of the polyurethane-
binder-based specimens here retained a high value despite the fact that the weight of
aggregate #2 out of the total weight of the specimens varied from 33 to 60 wt.%. As
the weight ratio of aggregate #2 increased to 72%, the compressive strength dramatically
decreased. This trend remained although the pores in specimen G72 were filled with
aggregate #8, which was the finest size considered in the study. Figure 7 shows the trends
of compressive strength of specimen with respect to weight fraction of #2 aggregates.
As the mixing amount of #2 aggregate increases, the compressive strength generally de-
creases, and the R2 value is approximately 0.7. A micro-CT examination and finite element
method based numerical simulation were conducted to investigate this attribute in the
following section.

Figure 7. Compressive strength results of PPM specimens.

According to Tennis et al. [38], the compressive strength of pervious concrete mixture
is in the range of 3.5–28 MPa, and the typical value is approximately 17 MPa [38]. Higher
compressive strength results have been reported when binders are prepared by mixing
cement and polymer: Giustozzi [38] fabricated pervious specimens with a compressive
strength of 50 MPa by applying cement and vinyl-acetate binder simultaneously. In addi-
tion, pervious materials with epoxy and polyurethane are reported to have compressive
strengths of 6.0–14.1 and 5.6–6.9 MPa, respectively [39,40]. The compressive strength of
36 MPa was also recorded in the case of a pervious material using vinyl acetate ethylene
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and acrylic emulsion synthetic polymers as binder [40]. In summary, the compressive
strength of about 7 MPa in the present experimental results is at an average level. Herein,
the mechanism according to the internal properties of PPM was analyzed in more depth
through micro-CT and numerical analyses.

4.2. Microstructural Characteristics

4.2.1. Analysis of Pore Characteristics

The microstructural characteristics of the specimens were investigated by examining
micro-CT images of each sample. Figure 8 shows segmented images of each specimen, as
obtained from micro-CT image processing. In this figure, the image on the left represents
the solid part of the specimen, while the image on the right is the pore region of each sample.
A solid mesh can be adopted for the finite element analysis to evaluate the mechanical
behavior, as discussed in the following section. In addition, the 3D volume of the pores can
be used to investigate the pore characteristics of the specimens.

Figure 8. Cont.
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Figure 8. Segmented images of each specimen: (a) G33, (b) G47, (c) G60, and (d) G72 (note: in

each figure, the solid part is on the left, and the image on the right represents the pore region of

the specimen).

From the pore images in Figure 8, it was noted that the pore structures of the G60 and
G72 specimens tended to be coarser than those of the G33 and G47 specimens. To examine
the quantitative pore characteristics, the porosity of the specimens was computed using
the pore volume in Figure 8. Here, only pores larger than 146 µm were considered, and the
measured porosity values of the G33, G47, G60 and G72 specimens were 19.55%, 20.55%,
24.81% and 29.50%, respectively. The qualitative and quantitative investigations both
indicated that the specimens became more pervious as the specimen number increased.
It was also found that the volume of pores in the materials varied up to 10% depending
on the size of the aggregate, although the mix ratio of the polyurethane was held constant.
In general, the pore structure of the material strongly affects the material properties,
specifically the compressive strength and water permeability, and these differences in
the porosity according to the aggregate size influenced the properties of the specimens
produced in this study.

4.2.2. Tortuosity Investigation

For a more detailed analysis of the pore structure, the tortuosity, an index by which
to examine the complexity of the pore path, was investigated for the target specimens.
Figure 9 shows the percolation paths of each specimen, which can affect the tortuosity as
they pass through the entire specimen. In this figure, the G33 specimen contains relatively
few paths compared to the other cases, particularly the G60 and G72 specimens. Specimens
with more paths can have a higher possibility in that water or fluid can flow, and this can
be confirmed by quantitative measurements of, for instance, the tortuosity.

using the pore volume in Figure 8. Here, only pores larger than 146 μm were considered, 

 

(a) (b) 

Figure 9. Cont.
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(c) (d) 

Figure 9. Pore paths for tortuosity in the specimens: (a) G33, (b) G47, (c) G60, and (d) G72 (note: the

red regions represent the pore paths considered in the present study.).

Figure 10 shows the tortuosity distribution of the specimens considered here. In this
figure, the x-axis denotes the tortuosity values as computed by the number of voxels, and
the y-axis represents the frequency of each tortuosity value. Here, tortuosity is defined as
the ratio between the actual path and the shortest distance, and this index can have a value
larger than one. The tortuosity value increases as the specimen contains a more complex
pore path, meaning that such a specimen can be considered as relatively less permeable. In
the cases studied here, the G33 specimen tended to have the most dispersed tortuosity with
the largest portion of the tortuosity exceeding a value of two; this indicates that the G33
specimen had the most complex and curved pore structure and was the least permeable
among the specimens in this study.

Figure 10. Tortuosity distribution of each specimen: (a) G33, (b) G47, (c) G60, and (d) G72.
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Compared to the other cases, the tortuosity of the G60 and G72 specimens was mostly
around one, which indicated that the specimens contained a wide and continuously con-
nected pore network through which fluid could flow. These results indicate that the
tortuosity is related to the porosity and relative pore size of the specimens, but its distri-
bution trend can differ even in cases with a similar porosity range. Therefore, in addition
to porosity, tortuosity can be used to describe the permeability-related characteristics of
pervious materials.

4.3. Numerical Results

In this study, the compressive behavior of PPM specimens was numerically simulated
using a finite element model that was devised using geometric information extracted by
a micro-CT examination. Through a series of experimental tests, the elastic modulus,
compressive strength, and plastic strain for the pervious pavement composite were de-
termined. With the modulus, compressive strength, and plastic strain, the elastoplastic
constitutive relation for the composite material considered in this work was defined and
applied to the FE model. Four types of specimens were considered, and each specimen
included pores throughout its material. Figure 11 displays the stress distribution of the
specimens under compression loading. Here, the PPM was assumed to act as an elastic
material, and the maximum principal stress was applied as the stress indicator [41]. These
figures are presented when the stress reached the compressive strength, as determined by
the experiment.

Figure 11. Cont.
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Figure 11. Stress distribution of PPM specimens under uniaxial compressive loading: (a) G33,

(b) G45, (c) G60, and (d) G77.

As shown in the figures, stress developed through the entire specimen under com-
pressive loading, and a large amount of compressive stress was established in the lower
region of each specimen. The developed stress concentrated around the pores throughout
each specimen and developed into large stress regions [42]. It is thought that the failure
behavior may have initiated around the pores where these stress concentrations developed.

As presented in the micro-CT examination and in the finite element model, the volume
and formation of pores in the specimens were varied and stress concentrations occurred
around the pores. Specimen G70, which had the largest volume of pores in its material, was
relatively vulnerable to compressive loading since stress was established and developed
into a large stress concentration around the pores, which may have led to a failure of the
material [43]. Meanwhile, specimens G33 and G47, which had relatively small volumes of
pores in their materials, presented large compressive strength values. It should be noted
that the volume of pores in the materials significantly influenced the compressive strength
of the pervious concrete material [44].

In addition, correlations between experimental variables were analyzed, as presented
in Figure 12. It was found that the incorporated amount of aggregate at the maximum
size (#2) was highly correlated with the porosity and tortuosity. Herein, the representative
value of tortuosity (τ) was estimated by the following equation:

τ∗ =
√

∑
n

r=1
(τr· f requencyr) (2)

where the superscript * denotes the representative, the subscript r is the scale, and n
indicates the overall value of the tortuosity.

The analysis showed that the aggregate size was highly correlated with the porosity
and tortuosity. As the aggregate size was increased, both the porosity and tortuosity
increased linearly (Figure 12a). In addition, the result in Figure 12b indicates that the
porosity in the specimen is highly correlated with the compressive strength. As in the
published literature [45–47], the material performance decreased as the porosity increased.
The tortuosity value also increased as the porosity was increased, but there was no strong
relationship (R2 = 0.69) compared to the compressive strength. This was judged as an
experimental limitation due to the use of too few variables and to secure more certain
experimental results regarding this aspect, additional research should be conducted in
the near future. Comprehensive test results including compressive strength, porosity, and
tortuosity shown in Figure 12 are also summarized in Table 4.
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Figure 12. Correlation analysis between test variables: (a) effects of the weight ratio of #2 aggregate on

the porosity and tortuosity, and (b) effects of the porosity on the compressive strength and tortuosity.

Table 4. Comprehensive test results including compressive strength, porosity, and tortuosity.

Specimens

G33 G47 G60 G72

Compressive strength (MPa) 7.8 ± 0.31 8.0 ± 0.97 7.2 ± 1.03 3.5 ± 0.74
Porosity (%) 19.55 20.55 24.81 29.5

Representative value of tortuosity 0.63 0.82 0.94 0.96

5. Concluding Remarks

The present study investigated the effects of the internal structures of PU-based pervi-
ous pavement materials on the compressive strength, pore size distribution, connectivity,
and tortuosity. Experimental tests, microstructural analyses, and FE simulations of the
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specimens with different aggregate sizes were utilized, and the key findings thus obtained
are summarized below.

(1) Compressive and permeability tests indicated that a combination of aggregate sizes
had a significant effect on the pore path tortuosity.

(2) High contents of large-sized aggregate (#2) provoked an increase in the porosity and
tortuosity, leading to high water permeability of these specimens.

(3) The specimen with a smaller aggregate size (2.5–10 mm) showed a dense internal
structure, though this was not closely associated with the compressive strength
development in this sample.

(4) The increased porosity contributed to a decrease in the compressive strength and
an increase in the tortuosity, and the effects of the porosity on the tortuosity were
insignificant compared to the compressive strength.

Porous materials such as pervious pavement are vulnerable to fatigue behavior, and
thus dynamic testing considering time history is required for a more precise analysis. It
may help to accurately characterize the transport load under laboratory conditions. The
dynamic testing is beyond the scope of the present study; however, we plan to extend our
work along this direction in the future.
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