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1. Introduction 
 

In the construction field, monitoring the long-term 

durability of structures throughout their service life is 

significant, and therefore considerable efforts have been 

made to monitor the soundness of structures efficiently (Lee 

et al. 2021, Dong et al. 2021). Recently, novel cement-

based sensors capable of monitoring structural health have 

attracted attention (Abolhasani et al. 2022). For instance, 

conductive fillers have been added to a cement matrix to 

render the sensing capability to the matrix, simultaneously 

improving its structural durability (Park et al. 2021, 

Abolhasani et al. 2022). It has been widely reported that the 

electrical conductivity of the conductive fillers-added 

cement composites changes when external strain/stress is 

applied, indicating the piezoresistive properties (Bang et al. 

2022). Based on these properties, many studies have 

investigated the sensing capability of conductive 
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cementitious composites. Chung (2002) fabricated 

cementitious composites by adding steel fibers, and tested 

their piezoresistive sensing properties. They observed the 

relationship between the fractional changes in electrical 

resistivity (FCR) and the amount of conductive fillers 

(Chung 2002). Sun et al. (2000) conducted the 

piezoresistive sensing tests using carbon fiber (CF)-

reinforced concrete under dynamic loading conditions, 

which revealed that the fabricated concrete is sensitive to a 

large range of loads, showing the potential of being used as 

structural health monitoring (SHM) sensors.  

Recently, many researchers have attempted to use 

carbon nanotubes (CNTs) instead of the conventional 

conductive fillers (e.g., carbon black, carbon fiber, graphite, 

and steel-based fibers), since the CNTs are nanoscale and 

have a high aspect ratio (Naeem et al. 2017, Wang et al. 

2020, Zhang et al. 2018). These advantages of CNTs can 

generate outstanding conductive networks in cement matrix 

with a small amount compared to the conventional 

conductive fillers, improving both electrical and 

piezoresistive sensing properties. Jang et al. (2022) 

fabricated cement composites containing multi-walled 

CNTs (MWCNTs) and carbon black (CB) for piezoresistive 

sensors. Nam et al. (2017) manufactured cement-based 

sensors by incorporating a small amount of MWCNTs 

compared to previous works which used conventional  
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Abstract.  Cement-based sensors have been widely used as structural health monitoring systems, however, their long-term 

sensing performance have not actively investigated. In this study, a deep learning-based methodology is adopted to predict the 

long-term piezoresistive properties of cement-based sensors. Samples with different multi-walled carbon nanotube contents (0.1, 

0.3, and 0.5 wt.%) are fabricated, and piezoresistive tests are conducted over 10,000 loading cycles to obtain the training data. 

Time-dependent degradation is predicted using a modified long short-term memory (LSTM) model. The effects of different 

model variables including the amount of training data, number of epochs, and dropout ratio on the accuracy of predictions are 

analyzed. Finally, the effectiveness of the proposed approach is evaluated by comparing the predictions for long-term 

piezoresistive sensing performance with untrained experimental data. A sensitivity of 6% is experimentally examined in the 

sample containing 0.1 wt.% of MWCNTs, and predictions with accuracy up to 98% are found using the proposed LSTM model. 

Based on the experimental results, the proposed model is expected to be applied in the structural health monitoring systems to 

predict their long-term piezoresistice sensing performances during their service life. 
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Table 1 Mix proportions of MWCNT/cement samples 

(wt.%) 

Sample 

code 
Cement 

Silica 

fume 
MWCNTs Water SP 

Flow 

(mm) 

C1 100 10 0.1 22 2.0 

100±5 C2 100 10 0.3 25 2.0 

C3 100 10 0.5 28 2.0 

 

 

conductive fillers, exhibiting their sensing capability under 

the dynamic loading tests.  

However, despite significant investigations on 

experimental studies about short-term sensing capabilities, 

it is difficult to examine their long-term sensing 

performances via experiments. This is because cement-

based sensors are constantly subjected to continuous 

dynamic loading and damage as they are often exposed to 

outdoor environments, all of which can cause changes in 

their sensing performances (Gao et al. 2013, Zhao et al. 

2014, Jang et al. 2022). Consequently, there are various 

limitations in experimentally analyzing the factors severely 

affecting cement-based sensors in a full range, thus, various 
efforts have been made to predict their piezoresistive 

sensing performances. For example, Garcia-Macias et al. 

(2018) proposed a micromechanics-integrated finite 

element (FE) multiphysics formulation for 

electromechanical modeling of a cementitious composite. 

Fang et al. (2021) derived an analytical model to simulate 

the influence of mechanical deformation on the electrical 

properties of CNTs-embedded composites, and the 

proposed model was validated by the experimental data 

obtained in the previous studies. In addition, Tallman and 

Wang (2013) presented a theoretical model that can predict 

the piezoresistive properties of CNTs-embedded composites 

under arbitrary straining, and they verified the accuracy of 

the proposed model by comparing their model with 

previous studies. 

The above-mentioned previous studies addressed the 

numerical and theoretical methods for analyzing the 
piezoresistive properties of composites incorporating CNTs. 

However, the micromechanics- and/or FE-based theory has 

limitations for predicting the long-term degradation of the 

cementitious composites caused by fatigue, loading, or 

aging during their service life. These theoretical approaches 

can predict the piezoresistive sensing performance in a short 

time in the elastic stress-strain domain, however, these 

approaches may not be suitable for accurately predicting the 

long-term nonlinear behavior of infrastructures. 

Furthermore, the conventional approaches-based simulation 

is required to fit complex model parameters, which limits its 

suitability for engineering applications (Conti and O’Hagan 

2010, Ongpeng et al. 2017). Whereas deep learning 

techniques are widely used to investigate complex systems 

in modern engineering problems, thus, a relatively efficient 

and reliable prediction method may be obtained by coupling 

long-term piezoresistive experimental data with deep-
learning approaches (Yu et al. 2022a, Yu et al. 2022b). 

Although the investigations on long-term piezoresistive 

sensing performance of cement-based sensors were 

attempted, there has been little research into predicting such 

long-term sensing stability. For these reasons, this study 

adopted a deep learning-based long short-term memory 
(LSTM) model to evaluate the prediction of long-term 

piezoresistive sensing performances of the cement-based 

sensors. The proposed model is expected to predict not only 

the long-term piezoresistive sensing performances of the 

cement-based sensors, but also the sensing stability as they 

are exposed to various weathering conditions. 

In this study, cement-based sensors were fabricated 

using MWCNTs as conductive fillers, with three different 

concentrations (0.1, 0.3, and 0.5 wt.%). The electrical and 

sensing properties of the samples were investigated 

experimentally. Then, a deep learning-based LSTM model 

with three different input variables (time, MWCNTs 

content, and applied loading) and one output variable 

(fractional change in electrical resistivity, FCR) was 

adopted to predict the long-term piezoresistive sensing 

stability. In addition, numerical analysis was used to 

observe the suitable model parameters. Thereafter, the 
model was trained with 30% of the experimental data, and 

the remaining data were used to validate the predictions. 

Finally, the accuracy of the proposed model was evaluated 

in each cement-based sensor with different MWCNT 

contents. 

 

 

2. Experiment and results 
 

2.1 Sample preparation and experiment methods 
 

Commercially available Type-I Portland cement 

(SAMPYO Cement Co., Ltd.) is used as the binder material 

in accordance with ASTM C150. MWCNTs with a diameter 

of 10 nm and length of 100-200 μm are incorporated into 

cementitious composites as conductive fillers. In addition, 

based on previous studies on methods of improving the 
dispersion of MWCNTs, 10 wt.% of silica fume (Elkem, 

Inc, EMS-970) and 2 wt.% of polycarboxylate-type SP 

(Dongnam Co., Ltd., FLOWMIX 3000L) are also 

incorporated (Yoon et al. 2020, Jang et al. 2021). Water-to-

cement ratios (w/c) of 0.22-0.28 are used to maintain a 

target flow of 110±5 mm, which is regarded as a favorable 

flow ability for dispersing MWCNTs in cementitious 

composites (Jang et al. 2021). Samples with different 

MWCNT contents (0.1, 0.3, and 0.5 wt.%) are prepared, as 

the percolation threshold of MWCNT-embedded 

composites is an important factor in their electrical and 

piezoresistive sensing performances (Lim et al. 2021, Jang 

et al. 2022). Details of the mix proportions are presented in 

Table 1. The numbers in the sample code indicate the 

MWCNT content. For example, 1, 3, and 5 denote samples 

with 0.1, 0.3, and 0.5 wt.% of MWCNTs, respectively. 
The samples are prepared as follows. First, cement, 

silica fume, and MWCNTs are placed in a Hobart mixer and 
mixed mechanically for 5 min at a low speed. 
Simultaneously, SP is added to the water. The solution 
containing water and SP is added to the dry mixtures (Park 
et al. 2019). Then, the mixtures are mixed mechanically for 
an additional 5 min at low speed, and 1 min at high speed. 
After mixing, the samples are placed in cubical molds 
(50×50×50 mm3). Copper electrodes (70 mm long and 20  
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Fig. 1 Electrical resistivity and conductivity of samples 

 

 

mm wide) are prepared, and both sides of the electrodes are 

coated with a silver paste to minimize the contact 

resistances between the samples and the electrodes. The 

prepared electrodes are embedded into the molds 20 mm 

apart and 50 mm deep. The samples are wrapped and cured 

in an oven at room temperature (25±2°C) for 1 d. After 1 d, 

they are demolded, wrapped, and cured in the same oven for 

an additional 27 d to prevent undesired chemical reactions. 
After 28 d, the samples for the electrical conductivity and 

piezoresistive sensing tests are dried in an oven at 60°C for 

3 d to evaporate any residual moisture. 

A portable multimeter (Keysight, U1282A) is used to 

measure the electrical resistance of the samples. The two-

probe method is used for convenience, and the measured 

electrical resistance is converted to electrical resistivity 

based on the dimensions of the electrodes. A servo-

hydraulic universal testing machine (Walter Bai, LFV-

2500HH) is used for the piezoresistive sensing test. 

Sinusoidal compressive loading between 0 and 50 kN and 

with a frequency of 2 Hz is applied to the samples for 

10,000 cycles, and the corresponding electrical resistances 

of the samples are recorded using a digital multimeter 

(Agilent Technologies, DMM 34410A). The recorded 

electrical resistances are then converted to fractional 

resistance changes, as described in the previous study, using 
the following equation 

FCR (%) = 
𝑅𝑡−𝑅0

𝑅0
× 100 (1) 

where Rt denotes the electrical resistance at time t with 
compressive loading, and R0 denotes the initial electrical 

resistance without an applied load. 

 

2.2 Piezoresistive sensing performance 
 

The electrical resistivities and conductivities of the 

samples are shown in Fig. 1. The resistivities of samples 

C1, C3, and C5 are 1279.1, 68.4, and 59.0 Ω·cm, 

respectively. These values are converted to electrical 

conductivity, giving 0.08, 1.50, and 1.99 S/m, respectively.  

Fig. 1 shows that there are dramatic changes in the 

electrical resistivity and conductivity between samples C1 

and C3, as the MWCNT content increases from 0.1% to 

0.3%. This is called the percolation threshold (Jang et al. 

2022). As reported in previous studies, the percolation 

threshold of CNT/cement composites is approximately 0.3- 

 
(a) 

 
(b) 

 
(c) 

Fig. 2 Piezoresistive sensing performances of samples (a) 

C1, (b) C3, and (c) C5 during cyclic loading 

 

 

0.5% MWCNT content by cement mass. The percolation 

threshold obtained in this study is equal to or less than that 

found in previous studies, indicating that the MWCNTs are 

well dispersed in the composites. Fig. 2 shows the 

piezoresistive sensing performance of the samples during 

the cyclic loading tests. It can be seen that the electrical 

resistivity decreases as the applied compressive load 

increases. 

This occurs due to changes in the distance between 

adjacent MWCNT particles. When a load is applied to the 

composites, the distance between adjacent MWCNTs 
decreases, thus the electrical resistivity decreases. This is 

called the piezoresistive sensing principle (Khalid et al. 

2021, Bhandari et al. 2021, Jang et al. 2021). Based on the  
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Fig. 3 Maximum fractional change in electrical resistivity of 

samples during cyclic loading test 

 

 

piezoresistive sensing performance results shown in Fig. 2, 

the maximum FCR under representative compressive 

loading is shown in Fig. 3. Samples C1 and C3 show 
similar results, with approximately 6% and 8% of the 

maximum FCR value when a 50 kN compressive load is 

applied to the samples. Sample C5 shows approximately 

17% of the maximum FCR under the same conditions.  

This result can be explained by the percolation 

threshold, as described above. In sample C1, where the 

MWCNT content is below the percolation threshold (<0.3 

wt.%), the MWCNT particles are too sparse to form 

effective conductive networks. The conductive networks 

improve as the MWCNT content increases above the 

percolation threshold (i.e., 0.3-0.5 wt.%) and contact 

between adjacent MWCNT particles increases. This is the 

reasonable reason of sample C5 has a higher FCR than 

samples C1 and C3. In addition, sample C5 shows 

approximately 7% of the maximum FCR value when a 3 kN 

compressive load is applied, whereas samples C1 and C3 

show less than 2% of the maximum FCR. This result is also 
supported by the above explanation, as a reduction in the 

compressive load may not reduce the distance between 

adjacent MWCNT particles, resulting in lower sensitivity. 

Repeatability is another important factor in 

piezoresistive sensing performance, and it is related to 

sensing stability. Here, the repeatability of the piezoresistive 

sensing performance is expressed as R-squared (R2), as 

shown in Fig. 4. The R2 values are calculated separately 

under loaded and unloaded conditions to avoid the effects 

of hysteresis, which occurs during cyclic loading (Yu et al. 

2016). The R2 values of samples C1, C3, and C5 are 0.9342, 

0.9599, and 0.9987, respectively, under loaded conditions, 

and 0.9725, 0.9727, and 0.9985, respectively, under 

unloaded conditions.  

The R2 value is lower in the loaded condition because 

micro-cracks developed and disrupted the conductive 

network, lowering the sensing stability. In particular, the R2 
values increase as the embedded MWCNT content 

increases from 0.1 to 0.5 wt.%. As explained above, the 

conductive networks are densest in sample C5. This meant 

that the disruption of individual MWCNTs during cyclic 

loading has less effect on sample C5 than on samples C1 

and C3. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 Piezoresistive sensing stability of samples (a) C1, (b) 

C3, and (c) C5 expressed as R-squared 

 

 

The response time for piezoresistive sensing is also 

investigated, and the peak shift properties are used to 

compare the response times of the samples. The peak shift 

indicates the time interval between the moment of 

maximum compressive loading and electrical resistivity, as 

illustrated in Fig. 5. Accordingly, the composites respond 

more rapidly as the time interval decreases. The calculated 
peak shift values are shown in Fig. 5(b), and are 

approximately 6.2%, 5.8%, and 4.0% for samples C1, C3, 

and C5, respectively.  
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(a) 

 
(b) 

Fig. 5 (a) Schematic description of response time expressed 

as peak shift and (b) peak shift values of samples obtained 

from the cyclic loading test 

 

 

The obtained peak shift values agree well with the 

electrical characteristics, as shown in Fig. 1. The distance 

between adjacent MWCNTs decreases as the quantity of 
embedded MWCNTs increases, and denser conductive 

networks are formed (Yang et al. 2014, Nie et al. 2022). 

Consequently, the sample with the highest MWCNT content 

has the fastest response when a compressive load is applied. 

From the piezoresistive sensing performance results, it can 

be found that the samples with MWCNT contents above the 

percolation threshold (i.e., 0.5 wt.%) are suitable for use as 

piezoresistive sensors because of their high sensitivity 

(FCR), good sensing stability (R2), and fast response (Peak 

shift). 

 

 

3. LSTM model for prediction of long-term 
piezoresistive sensing performance 

 

3.1 Recapitulation of LSTM model 
 
To assess the potential of the deep learning technique for 

time-dependent simulations of samples, a long short-term 

memory (LSTM) network is adopted in the present study. 

Recurrent neural networks (RNNs) are a basic concept in 

deep learning, and they consist of artificial neural network 

models with a structure continuously connected by nodes,  

 

Fig. 6 Flowchart of the proposed workflow for assessing the 

effect of calibration data on the performance of different 

models 

 

Table 2 Components of deep learning in LSTM method 

Index Components 

Software Tensorflow 

Model of LSTM BasicLSTMCell 

Learning rate 0.01 

Epoch 10 - 100 

Dense 1.0 

Dropout ratio 0.1 - 0.9 

Batch size 32 

Data scaling MinMaxScaler 

Input variables 

Time (s) 

Contents of CNTs (wt.%) 

Applied stress (kN) 

Output variable 
Fractional change in electrical 

resistivity (FCR, %) 

 

 

similar to neurons. They can control the sequential length of 

a variable using the feedforward method for user 

convenience (Graves et al. 2013, Asteris et al. 2021). An 

RNN updates the hidden layer using the equation 

ht = g (Wxhxt + Whhht-1 + bh) (2) 

where the input data x enters the layer, the feature is 

determined by the weight function W and bias b. The output 

data h can be obtained by multiplying this by the hidden 

layer function g, in addition to the tangent hyperbolic 

function (Berradi and Lazaar 2019). 

However, in previous studies using data with long-term 

dependence, problems occur where the weights suddenly 

explode or disappear when backpropagation is adopted with 

learning algorithms based on RNNs (Bengio et al. 1994). 

LSTM is a modified RNN designed to overcome these 

limitations, and it shows outstanding performance 

compared with other traditional models, especially with 
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long-term dependent data such as speech recognition, 

translation, and language modeling (Kratzert et al. 2018, 
Nguyen et al. 2019). LSTM has an additional advantage in 

terms of its ability to memorize the sequence of data. 

Memorization of earlier trends in the data is possible 

through three gates, combined with a memory line 

incorporated in a typical LSTM system. 

LSTM can be trained reliably through long-term 

dependencies where each layer exchanges information with 

the others. The cell state, one of the major differences 

between LSTM and traditional RNNs, can operate the entire 

LSTM system with simple linear calculations and transfer 

long-term data stored in the memory without deformation. 

The cell state is composed of three gates: (1) input, (2) 

output, and (3) forget. The LSTM adopted in this study 

investigates the performance to difference in the states with 

the same detailed settings (Karim et al. 2017, Yadav et al. 

2020), therefore, the default values provided by 

BasicLSTMCell (Castangia et al. 2021) were applied in the 
present study except for the changes in the hyperparameter 

values listed in Table 2. According to previous studies (Cai 

et al. 2020, Liu et al. 2019), it can be found that the noise-

induced sensitivity can be adjusted by adopting 

hyperparameter tuning process. Future research plans to 

supplement these defects and propose a more practical 

model. Further details are described in Table 2, and an 

outline of the simulation is shown in Fig. 6 as a flow chart. 

 

3.2 Parametric analysis and piezoresistive predictions  
 

In this study, the root-mean-square error (RMSE) is used 

to evaluate the performance of the proposed deep learning 

model. The LSTM model uses the 980352, 980802, and 

999832 of datasets to train the neural net and validate 

predictions for samples C1, C3, and C5, respectively. Fig. 7 

displays the adopted dataset with 10,000 cycles for all the 
samples. The datasets include four variables: the quantity of 

MWCNTs, time, electrical resistivity, and applied stress. 

Whereas the LSTM-based simulation parameters include 

the learning rate, number of epochs, and dropout ratio. 

Herein, the learning rate signifies how quickly the training 

process converges (Mohammadhassani et al. 2013, Yu et al. 

2020). The number of epochs means the number of 

executions, and in general, the accuracy improves as the 

number of epochs increases, however, increasing the 

number of epochs considerably increases the computational 

resources and time required.  
Dropout is a learning method that arbitrarily deletes 

neurons, and users can arbitrarily set the ratio of neurons to 

be deleted (Yu et al. 2020). In general, the learning rate is 
an effective variable in solving the overfitting and under-
fitting of prediction, in this study, it is fixed and applied to 

the experiment. A parametric study is conducted to examine 
the effects of these parameters with a control group and a 

comparison group. The results of these experiments are 
presented in Fig. 7, and the predictions are compared to the 
untrained experimental data to assess the predictive 

capability of the proposed deep learning-based model. The 
LSTM simulation is used to predict the FCR of the 

MWCNT/cement composites with various model 
parameters: the amount of training data, dropout ratio, and  

 
(a) 

 
(b) 

 
(c) 

Fig. 7 Experimental results for adopted dataset with 10 000 

cycles of samples (a) C1, (b) C2, and (c) C3 

 

 

number of epochs.  

The datasets are preprocessed for more accurate 

predictions and comparisons using MinMaxScaler. The C1 

dataset is considered for an initial investigation of the 

model parameters. It shows that the best fit for C1 is 

obtained when 50% of the dataset is used for training, the 

dropout ratio is 0.3, and the system runs for 50 epochs. The 
fastest test uses 30% of the dataset for training, a dropout 

ratio of 0.3, and runs for 10 epochs. 

The RMSE of the training and test errors are used to 

evaluate the effect of the size of the training dataset. 

Considering the amount of training data, the learning rate, 

epoch, and batch size are set to 0.01, 50, and 32, 

respectively. Subsequently, 5%, 10%, 30%, and 50% of the 

total data for C1 are utilized for training, and validation is 

based on the remaining data. The RMSE results, in 

accordance with the number of epochs, are shown in Fig. 8. 

As the amount of training data increases, the RMSE values 

converge more rapidly. That is, when 5% of the dataset is 

used for training, it converges to the final result after 

approximately 10 epochs.  

In contrast, when 10% or 30% of the dataset is used for 

training, it converges after 6 and 3 epochs, respectively. 

Furthermore, when 50% of the dataset is used for training,  
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(a) (b) 

  
(c) (d) 

Fig. 8 Root mean square error with (a) 5%, (b) 10%, (c) 

30%, and (d) 50% of the experimental dataset used for 
training 

 

 

the first simulation is similar to the final result. Overall, the 

epochs during the simulation process and the simulation 

time increased, however, a linear causal relationship could 

not be confirmed. 

Fig. 9 shows a comparison between the actual value 

(ground truth) and prediction for various dropout ratios. To 

examine the effect of dropout ratio, which prevents 

overfitting in the learning processes, a parametric study is 

conducted with various dropout values. Furthermore, to 

evaluate the effect of the weight parameter, three variables 

are set, as above. As the dropout ratio decreases, the 

prediction result is fitted more accurately. However, when 

the dropout ratio became extremely small, it is confirmed 

that the time almost doubled. Fig. 10 shows a comparison of 
the actual and predicted values after 10, 50, and 100 epochs. 

To confirm the results more specifically, the predicted 

and actual values for cycles 4500-4504 are considered. The 

predicted values generally converge within 10 epochs, so 

there is no significant difference, however, as the number of 

epochs increases, the variation between the predicted values 

and the actual values decreases. Compared to the amount of 

training data and dropout ratio, the number of epochs does 

not have a significant effect. 

The LSTM-based simulation results based on the C1 

dataset show that it may be appropriate to use 30% of the 

dataset for training, a dropout ratio of 0.3, and 50 epochs. 

The accuracy and computational cost of the analysis are 

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Comparison of actual and predicted values with 

dropout ratios of (a) 0.1, (b) 0.3, and (c) 0.9 
 

 

considered, and the same parameters are applied to the data 

for samples C3 and C5.  

Fig. 11 shows the training and validation datasets used 

to examine the RMSE of the predictions based on the 

LSTM model. Here, 30% of the total dataset is used for 

training, and the rest is used to validate the predicted value. 

Overall, there is no significant difference in the values, 

however, the expected result for C1 has a slightly lower 

RMSE than that for C3, which is supposed to have noise in 

the training dataset, and C5, in which the validation dataset 

is considered to be flat. The main results of this study  
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(a) 

 
(b) 

 
(c) 

Fig. 10 Comparison of actual and predicted values after (a) 

10, (b) 50, and (c) 100 epochs for specific loading cycles 
 

Table 3 Results with time calculated using LSTM method 

Output 

variable 

Sample 

code 

Dropout 

ratio 
Epoch 

Amount of 

data (%) 
RMSE 

Required 

time (s) 

FCR (%) 

C1 

0.l 50 30 0.0199 6205.563 

0.3 

10 30 0.0210 805.721 

50 

5 0.0447 2305.396 

10 0.0257 2725.250 

30 0.0202 3639.966 

50 0.0199 4733.435 

100 30 0.0201 7405.863 

0.9 50 30 0.0643 3475.401 

C2 
0.3 50 30 

0.0204 2757.071 

C3 0.0205 3330.604 

 

 

including the effects of the amount of training data, dropout 

ratio, and number of iterations are presented in Table 3. 
 
 
4. Conclusions 

 

Cement-based sensors are exposed to continuous 

dynamic loading and/or damage, degrading their sensing 

stability, nevertheless, predictions of long-term sensing 

stability have rarely been reported. Therefore, this study 

presents a deep-learning analysis combining experimental 

 
(a) 

 
(b) 

 
(c) 

Fig. 11 Comparison of actual and predicted values with 

MWCNT contents of (a) 0.1 wt.%, (b) 0.3 wt.%, and (c) 0.5 

wt.% 
 

 

data and a LSTM model to predict the stability of long-term 

piezoresistivity. Related experiments are conducted, and the 

test results are used as training data. The simulations 

indicate that the parameters of the LSTM model have a 

notable effect on the predicted long-term piezoresistive 

sensing performances of the composites. By comparing the 

predictions with the experimental results, the validity of the 

proposed deep-learning approach is evaluated, and the 
following conclusions can be drawn from this study. 

• The electrical resistivity decreases from 1279.1 to 59.5 

Ω·cm as the embedded MWCNT content increases from 

0.1 to 0.5 wt.%. For the piezoresistive sensing results, 

the sample with 0.5 wt.% of MWCNTs, which is within 

the range of the percolation threshold, shows the highest 

FCR of 17%. 

• When a cyclic load is applied continuously, the FCR of 

the samples tends to be higher than that in the initial 

period. Samples with 0.5 wt.% of MWCNTs show the 

most stable long-term piezoresistive sensing behavior. 

• The LSTM-based predictions are significantly affected 

by the model parameters, such as the quantity of training 

data, dropout ratio, and number of epochs. The optimal 

prediction results are obtained when the 30% of the total 

dataset is used for training, the dropout ratio is 0.3, and 

there are 50 epochs. 
• To validate of the proposed deep learning approach, 
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30% of the total dataset is used to train the LSTM, and 

the piezoresistive sensing performance is predicted for 
the remaining 70%. The average RMSE is 0.02, and the 

average calculation time is approximately 1.14 h, which 

is 18% less than the time consumed by long-term 

piezoresistive sensing. 

These findings are expected to contribute to predict the 

long-term sensing stability of cement-based sensors by 

considering the complex properties of cement, long-term 

behaviors, and mechanical-electrical relations. However, 

there have some imitations of the proposed model to apply 

in various types of cement-based sensors considering the 

external environmental conditions, thus, further studies will 

be carried out to improve the accuracy and mitigate the 

drawbacks of the proposed models. In addition, the 

proposed model will be applied to predict the sensing 

performances of cement-based sensors as they are exposed 

to various weathering conditions.  
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