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A B S T R A C T   

In the present study, carbonyl iron powder (CIP)-embedded carbon fiber-reinforced polymer (CFRP) composites 
were fabricated as lightweight electromagnetic interference (EMI) shielding composites. Four different CIP 
contents (e.g., 0%, 100%, 200%, and 300% by mass of epoxy resin) were added to fabricate the composites, and 
the effects of the incorporated CIP contents on the electrical characteristics and EMI shielding capability of the 
composites were investigated by means of AC conductivity, reflection and absorption of EM wave shielding tests, 
and by calculating the permittivity and permeability values. These outcomes showed that the EMI shielding 
capability was improved when increasing the incorporated CIP content. The results were analyzed using 
microstructural images taken via a FE-SEM and by EDS observations, which showed that the Fe-atomic com
ponents increased with the addition of CIP, thus improving the EMI shielding capability. In addition, the 
fabricated CIP-embedded CFRP composites were coated onto cement mortar and the applicability of these coated 
composites as EMI shielding composites in structures was examined. Shielding effectiveness exceeding 50 dB was 
noted, suggesting a potential of utilizing the fabricated CIP-embedded CFRP composites as EMI shielding com
posites in the structures.   

1. Introduction 

With the rapid developments of electrical devices and the increas
ingly widespread use of 5G telecommunication technology, the demand 
for electromagnetic interference (EMI) shielding composites has 
strengthened due to the harmful effects of EMI on people’s health [1]. In 
addition, unnecessary electromagnetic (EM) waves can interfere with 
other electrical communication devices, increasing the importance of 
EMI shielding composites in the communications industry [2–5]. In civil 
engineering fields, construction equipment and structures are suscepti
ble to EM waves; thus, cement-based barriers composed of metallic 
materials are widely used as EMI shielding composites for the protection 
from the EM waves [5–7]. However, the incorporation of conventional 
metallic materials into the cement-based barriers can increase the 
weight and lead to corrosion problems, thus presenting various obstacles 
that prevent the wider application of these materials in civil industries 
[6–8]. 

For these reasons, many researchers have attempted to utilize the 
carbon-based materials (e.g., carbon fiber, carbon black, and carbon 

nanotube) to cement-based barriers given their excellent electrical 
conductivity which renders EMI shielding properties to the barriers 
[6–15,39,40]. Nam et al. [6] incorporated 1.0 wt% multi-walled nano
tube into 2.36 mm cementitious composites, showing EMI absorption 
shielding effectiveness of 29 dB in a frequency range of 8.2 to 12.0 GHz. 
Micheli et al. [16] fabricated 3 cm concrete composites incorporating 3 
wt% carbon nanotube, with the composites showing EMI shielding 
effectiveness of approximately 12 dB at an input frequency of 2.6 GHz. 
Yoon et al. [13] added CNT 0.2% and CF 0.5% with length of 6 mm to 
the cementitious composites, and the composites exhibited 18 dB of EMI 
shielding effectiveness at an input frequency of 10 GHz. Although many 
researchers have investigated the potential utilization of carbon-based 
materials as EMI shielding composites, various obstacles such as 
dispersion and their high cost have led to low applicability of these 
materials in civil industries. 

In recent years, carbonyl iron powder (CIP), with a purity level of 
97%, has been highlighted in relation to the fabrication of EMI shielding 
composites due to its outstanding magnetic properties and high satu
ration magnetization characteristics [17–23,35]. Chen et al. [17] 
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investigated the EMI shielding characteristics of CIP-incorporated epoxy 
composites, finding that increasing the CIP content has a notable effect 
on the EMI shielding effectiveness. Sedlacik et al. [19] fabricated poly
meric composites incorporating CIP 40 vol% and observed that the 
fabricated composites showed EMI shielding effectiveness of approxi
mately 20 dB. Sum et al. [21] examined the effects of the CIP concen
tration on the EMI shielding effectiveness of CIP-embedded cementitious 
composites. They found that the EMI reflection shielding effectiveness 
was increased from 2 dB to 17 dB when CIP 0.5 wt% was embedded into 
the cementitious composites, clearly demonstrating the potential of 
using CIP as an EMI shielding composite material in civil industries [21]. 
Although many efforts have demonstrated the notable effects of CIP 
incorporation that improve the EMI shielding capabilities of cementi
tious composites in civil industries, incorporating CIP into the cemen
titious composites is also associated with various disadvantages, such as 
a high cost and poor applicability to the existing structures. 

In this regard, the present study focuses on the CIP-embedded carbon 
fiber-reinforced polymer (CFRP) composites. Lightweight CIP- 
embedded CFRP composites with high mechanical properties can 
readily attach to the cement-based structures. Moreover, CFRP com
posites are commonly utilized as the reinforcement composites in civil 
structures due to their high compatibility with the structures used in 

construction [24–26,38]. Herein, CIP amounts at four different con
centrations (0, 100, 200, and 300 wt%) were added into an epoxy resin 
and were then coated onto carbon fiber sheets to fabricate the CIP- 
embedded CFRP composites. The AC conductivity, reflection and ab
sorption shielding effectiveness, permittivity, and permeability of the 
fabricated composites were investigated to observe the effects of the CIP 
concentration on the EMI shielding capabilities. In addition, micro
structural analyses of the fabricated composites were conducted by 
means of scanning electron microscopy (FE-SEM) and energy disperse X- 
ray spectroscopy (EDS). Lastly, the fabricated CIP-embedded CFRP 
composites were coated onto the cementitious composites and the 
applicability of the proposed composites as EMI shielding composites in 
civil structures was investigated. 

2. Fabrication and measurements 

2.1. Materials and fabrication procedure 

In the present study, a 12 k carbon fiber UD prepreg (CP300NS), 
epoxy resin (L-101(R)), and CIP (CIP 3189) were utilized to fabricate the 
CIP-embedded CFRP composites for EMI shielding. The diameter of the 
CIP used here ranged from 3.0 to 4.0μ m and the purity was 

Fig. 1. Fabrication details of CIP-embedded CFRP composites.  

Fig. 2. AC conductivity of specimens in the (a) S-band and (b) C-band frequency ranges.  
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approximately 98%. The fabrication details of the CIP-embedded CFRP 
composites are shown in Fig. 1. CIP at levels of 0, 100, 200, and 300% by 
mass of epoxy resin was added into the epoxy resin to create four 
specimens, which were then mixed by hand for 3 min while the carbon 
fiber sheet used here was cut into pieces 150 × 150 mm2 in size. Carbon 
fiber sheets rotating at angles of 0◦ and 90◦ were put into a mold and the 
epoxy resin with CIP was poured on the carbon fiber sheets to create a 
single layer (See Fig. 1). 

An identical process was repeated for five cycles to build five layers, 
and the layered composites were compressed at 120 ◦C under 10 MPa for 
1 h to fabricate the CIP-embedded CFRP composites [15]. The fabricated 

specimens are denoted here as C0, C100, C200, and C300 according to 
the incorporated CIP content. To measure the EMI shielding effective
ness of the specimens, they were cut into donut-shaped pieces with an 
inner diameter of 3 mm, outer diameter of 7 mm, and thickness of 4 mm 
[6,8,27]. Specimens for measurements of the tensile strength and 
Young’s modulus were also prepared as confirming to ASTM D638. 
Meanwhile, a cement mortar sample 300 × 300 × 100 mm3 in size was 
fabricated and the fabricated CFRP composites with 300% CIP were 
coated onto the cement mortar to assess the applicability of the speci
mens as EMI shielding composites in civil structures. 

2.2. Experimental details 

The electrical AC conductivity of the specimens was measured using 
a PNA-L network analyzer (Agilent N5239), a device capable of 
measuring the AC conductivity in the frequency range of 300 kHz to 8.5 
GHz. The EMI shielding capabilities including four different S-parame
ters (i.e., S11, S12, S21, S22), the permittivity, and the permeability values 
were measured in the frequency range of 1.0 GHz and 8.9 GHz using a 
network analyzer, a 7-mm airline instrument (Agilent 85051), and 
materials measurement software (Agilent 85071E). 

The tensile strength and Young’s modulus of the specimens were 
measured using a universal testing machine (INSTRON 5982) with a 
loading rate of 2 mm/min. Five specimens in each of the mix proportions 
underwent the tensile strength testing; the average values were calcu
lated from triplicate trials, except for the specimens with the maximum 
and minimum values. Microstructural images of the specimens were 
taken via a field emission FE-SEM (Hitachi SU 5000) [36,37]. In addi
tion, the applicability of the specimens to civil structures was investi
gated, conforming to the military standard MIL-STD-188–125 [16] 
pertaining to sending and receiving antennas (Anritus) in the frequency 
bandwidth range of 600 MHz to 2 GHz. The receiving antenna in this 
case was placed in a shielding room with an absorber to minimize EM 
waves, and the shielding specimens were placed between the sending 
and receiving antennas at distances of 2 m and 1 m. 

3. Results and discussions 

3.1. Electrical conductivity and EMI shielding capability 

The AC conductivity values of the specimens at the frequency ranges 
of S-band (2 GHz− 3 GHz) and C-band (4 GHz− 8 GHz) are shown in 
Fig. 2. This figure shows that the incorporation of CIP increased the AC 
conductivity, as indicated by the properties of the CIP. As reported in the 
literature, higher AC conductivity can be obtained by increasing the 
incorporated CIP content, showing a phenomenon similar to that found 
in a previous study [28]. In addition, the figure shows that the AC 
conductivity values are proportional to the applied input frequencies. 
According to earlier work, the AC conductivity of composites incorpo
rating an electrical conductive filler is proportional to the frequency of 
the applied voltage, conforming to the Jonscher universal power law 
and suggesting a possible mechanism to explain the results in Fig. 2 
[29,30]. 

Meanwhile, the EMI shielding capabilities against absorption loss 
and reflection loss and the overall shielding effectiveness of the speci
mens are shown in Figs. 3 and 4. The EMI shielding capabilities 
increased as the incorporated CIP content was increased, as indicated by 
the properties of CIP, which improved the conductivity and magneti
zation [17]. Specifically, it should be noted that the absorption loss is a 
more dominant factor with regard to the overall shielding effectiveness 
compared to the reflection loss, as shown in Fig. 4. Al-Saleh et al. [4] 
reported that the reflection loss serves as a primary shielding mechanism 
when shielding composites are composed of a sheet of a homogeneous 
conductive material, as opposed to composites with conductive fillers 
and an inclusive matrix. In contrast, the absorption loss is the main 
shielding mechanism in the composites composed of electrically 

Fig. 3. Absorption (a), reflection (b), and total EMI shielding capabilities (c) of 
the specimens. 
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Fig. 4. EMI shielding effectiveness of the specimens in terms of absorption and reflection in representative frequencies.  
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conductive fillers and/or magnetic dipoles, and the absorption loss can 
be enhanced as materials with conductive and/or magnetic properties 
are incorporated into composites [4]. For these reasons, the absorption 
loss shows a higher value compared to those of the reflection loss, and 
the EMI shielding effectiveness improved as the incorporated CIP con
tent was increased, exhibiting shielding effectiveness of 99.7% in the 
C300 specimen at 8 GHz (See Fig. 4). 

The shielding effectiveness outcomes at bandwidths of − 10, − 15, 
− 20, and − 25 dB for the specimens are presented in Table 1. This table 
indicates that the incorporation of CIP improved the shielding effec
tiveness and widened the frequency bandwidth. Specifically, the C300 
specimen showed shielding effectiveness of − 20 dB at frequencies 
ranged from 5.9 to 8.5 GHz and of − 25 dB at frequencies ranging from 

8.1 to 8.5 GHz, with bandwidths of 2.6 and 0.4 GHz, respectively. The 
obtained bandwidths belong to the C-band; thus, these results exhibit an 
enlarged bandwidth compared to those reported in previous studies 
[6,7,31–33]. 

3.2. Permittivity and permeability values 

The real and imaginary parts of the permittivity and permeability 
values were measured and were converted to loss factor values using a 
tangent function, as shown in Fig. 5. This figure shows that the loss 
factor of the permittivity has a higher value than that of the perme
ability. This can be deduced from the properties of the specimens 
composed of CFRP and CIP, leading to an improvement of the permit
tivity compared to the permeability [17]. Specifically, negative values 
were found for the permeability loss factor, as shown in Fig. 5, regardless 
of the specimen. Based on the theoretical background, the real and 
imaginary parts of the permeability are positive values, leading to the 
positive values of the loss factor [4]. However, some experimental 
values of the permeability showed negative values close to 0, indicating 
that negative values of the loss factor can be negligible. 

In addition, the frequency-dependent properties of the permittivity- 
based loss factor were observed in the specimens incorporating CIP (i.e., 
C100, C200, and C300 specimens), and the periodic properties of the 
permittivity-based loss factors increased as the incorporated CIP content 
was increased. According to a study by Sum et al. [21], the periodic 
property can be determined by assessing the EMI shielding capability 
with composites composed of magnetic particles, leading to a resonance 
frequency, and an increase in the bandwidth related to EMI shielding 
capabilities can be realized. Hence, the results in Fig. 5 are in good 
agreement with earlier work, demonstrating the positive effects of CIP 

Table 1 
Shielding effectiveness at bandwidths of − 10 dB, − 15 dB, − 20 dB, and − 25 dB.  

Shielding 
Effectiveness 

Specimen code 

C0 C100 C200 C300 

− 10 dB Band 1.0–8.5 GHz 
Width : 7.5 
GHz 

1.0–8.5 GHz 
Width : 7.5 
GHz 

1.0–8.5 GHz 
Width : 7.5 
GHz 

1.0–8.5 GHz 
Width : 7.5 
GHz 

− 15 dB Band 4.9–8.5 GHz 
Width : 3.6 
GHz 

3.0–8.5 GHz 
Width : 5.5 
GHz 

1.0–8.5 GHz 
Width : 7.5 
GHz 

1.0–8.5 GHz 
Width : 7.5 
GHz 

− 20 dB Band – – – 5.9–8.5 GHz 
Width : 2.6 
GHz 

− 25 dB Band – – – 8.1–8.5 GHz 
Width : 0.4 
GHz  

Fig. 5. Loss factor of the permittivity and permeability values: (a) C0, (b) C100, (c) C200 and (d) C300 specimens.  
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incorporation to improve the EMI shielding capabilities. 

3.3. Mechanical properties and microstructural analysis 

The tensile strength and Young’s modulus values of the specimens 
are exhibited in Fig. 6. The specimens, regardless of the amount of 
incorporated CIP content, showed tensile strength and Young’s modulus 
values that exceeded 750 MPa and 50 GPa, respectively. In addition, 
phenomena indicating that the incorporation of CIP increased the tensile 
strength and Young’s modulus can be observed in Fig. 6, as determined 
from the CIP given its high mechanical properties. To analyze the small 
reduction in the tensile strength found in the C200 specimen, FE-SEM 

images were taken and the gaps between the CIP layers were measured. 
As shown in Fig. 7, the gaps in the specimens were 0.549, 0.547, 

0.601, and 0.550 mm as the CIP content was increased. The C200 
specimen showed a gap wider than those of the other specimens, leading 
to lower tensile strength of the C200 specimen. Meanwhile, EDS ob
servations were utilized to detect the Fe-atomic components in the 
specimens as the incorporated CIP content was increased. The Fe-atomic 
components were found to be 0, 0.34, 0.73, and 1.03 atomic% in the C0, 
C100, C200, and C300 specimens, respectively, as can be deduced from 
the incorporated CIP, which is composed of 97% of Fe-component. In 
this regard, the FE-SEM and EDS observation results in Fig. 7 are in 
agreement with results of the EMI shielding capability tests shown in 

Fig. 6. Tensile strength (a) and Young’s modulus (b) of the specimens.  

Fig. 7. SEM and EDS images of the (a) C0, (b) C100, (c) C200, and (d) C300 specimens with Fe atomic signals.  
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Figs. 3 and 4. 

3.4. EMI shielding capability of cement mortar coated with CIP-embedded 
CFRP 

A schematic description and the experimental setup used in the test 
are shown in Fig. 8 [34]. Here, a cement mortar was fabricated con
forming to ASTM C1329, and the C300 specimens were chosen to be 
coated onto the cement mortar as a test of the EMI shielding capability, 
as shown in Figs. 3 and 4. One layer and three layers of the C300 
specimen materials were coated onto the cement mortar, referred to 
here as the C300-1 layer and the C300-3 layer specimens. The shielding 
effectiveness of these coatings was compared to that of a cement mortar 
which served as a control specimen. 

The horizontal and vertical shielding effectiveness of the specimens 
and their shielding effectiveness outcomes at 1 GHz and 2 GHz are 
exhibited in Fig. 9. This figure shows that the shielding effectiveness was 
improved when the C300 specimens were coated onto the cement 
mortar, and an increase of the number of layers led to an improvement 
of the shielding effectiveness. The control specimens exhibited hori
zontal and vertical shielding effectiveness outcomes of 5.8 dB and 6.0 
dB, respectively, at an applied frequency of 1 GHz. However, the C300-1 

layer and C300-3 layer specimens exhibited horizontal and vertical 
shielding effectiveness outcomes of 39.1 and 45.1, and 52.5 and 54.5 dB, 
respectively. Similarly, the horizontal and vertical shielding effective
ness values of the control, C300-1 layer, and C300-3 layer specimens 
were 6.7, 6.2, 40.6, 42.5, 50.5, and 49.0 dB. Hence, the C300-1 layer and 
C300-3 layer composites showed an improvement in the horizontal and 
vertical shielding effectiveness outcomes of approximately 579, 648, 
812, and 805% at applied frequencies of 1 GHz, and 507, 586, 656, and 
691% at an applied frequency of 2 GHz compared to those of the control 
specimen. 

4. Concluding remarks 

In the present study, CIP-embedded CFRP composites were fabri
cated with four different CIP contents (i.e., 0, 100, 200, and 300 wt%), 
and effects of CIP inclusion on the electrical and EMI shielding charac
teristics of the specimens were investigated. Microstructural images 
were taken to observe the Fe-atomic components in the specimens with 
an increase in the incorporated CIP contents. The main conclusions 
obtained from the present study are summarized below. 

Fig. 8. Schematic description (a), experimental setup (b) for the mock-up test, and the utilized shielding specimens (c).  
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(1) The AC conductivity of the specimens was improved as the 
incorporated CIP content was increased, and the effects of 
incorporating CIP on the AC conductivity were dominant in the S- 
and C-band frequency ranges.  

(2) Enhanced EMI shielding effectiveness of the specimens was 
observed with an increase in the CIP contents, and the specimens 
incorporating 300% of CIP exhibited outcomes of 2.6 GHz and 
0.4 GHz at bandwidths of − 20 dB and − 25 dB, respectively.  

(3) It was found that the Fe atomic component in the specimens 
existed at rates of 0%, 0.34%, 0.73%, and 1.30% when the 
incorporated CIP contents were 0%, 100%, 200% and 300%, 
respectively, leading to an improvement of the EMI shielding 
capability of the specimens.  

(4) The fabricated CIP-embedded CFRP composites were coated onto 
a cement mortar specimen and their EMI shielding capability was 
investigated, showing EMI shielding capabilities exceeding 50 dB 
at frequencies of 1 GHz and 2 GHz. 
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