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Abstract: Determination and prediction of degree of reaction (DOR) of supplementary cementitious
materials (SCMs) in hydrated Portland cement are important for designing concrete with lower
levels of embodied carbon dioxide. Herein, a model for predicting the DOR of SCMs in hydrated
cement was developed using a set of collected data and a machine learning algorithm based on
genetic programming toolbox for the identification of physical systems. The results suggest that the
model reliably predicts the DOR of slag, fly ash, metakaolin, and silica fume with a coefficient of
determination (R2) value of 0.89. The predicted DOR of SCMs is found to be directly proportional to
water-to-cement ratio and curing time, while it is highly reliant on the oxide composition and differs
amongst SCMs. For instance, the DOR of slag substantially increased with a higher alumina content,
while the DOR of metakaolin remained more stable, primarily influenced by the silica-to-alumina
ratio. The proposed model is particularly useful for predicting phase assemblages of SCMs-blended
Portland cement when experimental data and information on SCMs are limited and properties
of SCMs are highly variable. The insights gained from this study offer a pathway towards more
sustainable and efficient concrete design, aligning with contemporary environmental objectives.

Keywords: supplementary cementitious materials; degree of reaction; machine learning; prediction;
thermodynamic modeling

1. Introduction

Concrete is the world’s second most utilized material, behind water [1]. Unfortunately,
being a primary component of concrete, cement production is not environmentally friendly,
since it requires a significant amount of energy, which results in the emission of massive
amounts of anthropogenic CO2. Currently, the cement industry accounts for approximately
8% of global CO2 emissions [2]. As a result, the cement industry was actively developing
plans and policies to ensure acceptable carbon emissions. China, the world’s top cement
manufacturer, user, and CO2 emitter, pledged that by 2030, GDP CO2 emissions per capita
would be 60–65% lower than in 2005 [3]. In 2009, the IEA roadmap proposed an 18%
reduction in CO2 emissions from the cement sector by 2050 compared to 2006 [4]. To stay on
track with the IEA plan, an annual reduction of 3% in CO2 emissions is required beginning
in 2020 and continuing until 2030 [5]. Hence, technologies that mitigate CO2 emissions
and reduce the CO2 footprint of concrete are urgently demanded. These include the use
of supplementary cementitious materials (SCMs), cements made of alternative clinkers,
carbon capture, utilization and storage techniques, alkali-activated cements, and improving
the efficiency of cement use and structural solutions [1,6]. Among these, SCMs are the
most favorable carbon reduction alternative due to the past accumulated experimentations,
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which provide a foundation for further research, as well as their reduced cost and good
performance [7,8].

SCMs are clinker-replacement materials that can provide extra silicates, aluminosili-
cates, or calcium aluminosilicates that can react to form different hydration products. SCMs
can improve the properties of cementitious systems by exhibiting pozzolanic properties,
hydraulic properties, or filler properties [9]. The major SCMs used recently are slag, fly
ash, limestone, calcined clays (metakaolin), and silica fume, with plenty of research data
available. Currently, slag, fly ash, and limestone account for the vast majority of mineral
additions. However, because of its extensive use and the ever-growing effectiveness in
steel-making technology, slag availability is declining, leaving limited room for future
CO2 reduction [1]. Fly ash, on the other hand, is twice as abundant as slag, but due to its
variable quality, only about one-third is suitable for replacement [10]. Limestone can be
used in Portland cement (PC) up to a maximum of 15% and must be ground to a specific
level of fineness; however, using more than this percentage will result in poor strength and
porosity [11]. Silica fume availability is very low and usually preferred for the production
of high-strength concrete [10]. Calcined clays represent the ideal alternative for cement
replacement due to their abundance, even more so than cement, and can be utilized as
a cement substitute with comparable performance [12]. However, direct measurement
of SCMs performance is challenging because it is difficult to determine which way or
combination of ways the SCMs altered the cementitious material property, which indirectly
implies the DOR.

Numerous methods have been proposed for determining DOR, but they often lack
certain requirements. For instance, some of these methods are only applicable to specific
SCMs, pose issues regarding precision and replication, are laborious and time-consuming,
and do not consider latent hydraulic properties. A detailed overview of the various DOR
determination methods, along with their respective shortcomings, is provided in Table 1.
The choice of a DOR determination method depends on the properties of the material
and the required level of analytical precision. This highlights the critical importance of
selecting a suitable DOR assessment method that aligns with the objectives of the study
and the attributes of the material. Table 1 also underscores the necessity for alternative
approaches to DOR determination, as many existing methods have limitations. On the
contrary, there are some in-depth characterization approaches, notably those related to nano-
size imaging, which provide great possibilities for determining DOR in the future using
structure-property connections but are still in their early stages [13]. Moreover, machine
learning algorithms can be utilized effectively to predict the DOR. Machine learning is
used to create algorithms that can take in input data and then use statistical analysis to
estimate the output depending on the type of data available [14]. Machine learning has
demonstrated its effectiveness in enhancing predictive accuracy and reliability, especially in
challenging scenarios involving the inherent complexity of cementitious materials, despite
the existence of various methods for DOR determination [15–17]. DOR prediction can
be aided by machine learning, especially when experimentally obtained results show
large variability, characterization is difficult, new material has been produced, and time
is constrained.

The accurate prediction of the DOR of SCMs using machine learning models can
significantly enhance their adoption and utilization, thereby supporting sustainable con-
struction practices. SCMs foster sustainability in construction in multiple ways. Rahla
et al. [18] thoroughly demonstrated the advantages of incorporating SCMs such as slag,
fly ash, and silica fume regarding their environmental impact, economic performance,
and functional benefits as with their aggregated sustainability score. Furthermore, SCMs
play a pivotal role in natural resource utilization by promoting efficient resource usage
through waste material recycling, ultimately producing cost-effective concrete [19,20]. Ad-
ditionally, SCMs have the potential to significantly enhance the properties of cementitious
systems through a synergistic effect, resulting in improved strength and durability [21,22].
Moreover, their utilization leads to energy savings during production. Siddika et al. [23]
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demonstrated that using rice husk ash as an SCM produces energy-efficient concrete with
reduced energy consumption.

The present study aims to produce a model that can predict the DOR of the SCMs
from their main properties using machine learning. Concerning the data obtained, a
machine learning algorithm based on GPTIPS appears to best interpret the data [24]. The
findings indicate that the results correlate well with the laboratory DOR. Accordingly, by
incorporating the results of the DOR model into the inputs of thermodynamic modeling
software, the phase assemblage outputs of the SCMs in hydrated PC were predicted.

Table 1. Common DOR determination methods and their limitations.

DOR Tests Description Limitations References

Selective
dissolution

The unreacted clinker phases, as well as
the hydrates from the clinker and SCMs,
are dissolved, leaving just the unreacted

SCM as a residue for quantification

• Dissolution is incomplete, leading to large
non-quantifiable errors

• Various assumptions are made that are
challenging to replicate in different
laboratories.

• There are hydrated phases that are
non-dissolvable

• Used for slag and fly ash only

[25–27]

XRD (Rietveld-
PONKCS)

Quantification of amorphous and
crystalline phases using diffraction data

• Results cannot be reproduced between
laboratories due to differences in the
refining process

• Precision becomes poor below 10% SCM
replacement

• The variation in C-S-H crystallinity in
regular OPC hydration and UHPC can lead
to errors in C-S-H quantification.

[28,29]

SEM-BSE
Determination of element composition by

forming a relation between image
brightness and atomic number

• It is challenging to quantify fine (small)
particles

• A limited number of high-resolution SEMs
and technology is still developing

• laborious and time-consuming

[25,30,31]

NMR

Determination of composition, local
structure ordering, and bonding from

resonance frequencies that are
determined by the gyromagnetic ratio of

the nucleus, the magnetic shielding
interaction and the quadrupolar

interaction, peak multiplicities that are
generated by the scalar couplings to

neighboring nuclei, and peak intensities.

• Cannot be utilized for materials having
substantial amounts of paramagnetic ions,
such as iron

• Sensitivity is low and needs at least
micromolar amounts of material for
analysis

• Limited experience and equipment
availability

• Time-consuming

[7,27,32,33]

Chapelle’s test Quantification of consumed portlandite
from (Ca(OH)2) reaction with pozzolan

• Quantifications need to be adjusted
according to the amorphous content

• Does not take into account materials’ latent
hydraulic properties

• Correction for carbonation is required since
preventing it is impracticable

[7,34–36]
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Table 1. Cont.

DOR Tests Description Limitations References

Frattini test
Chemical titration to quantify the

amounts of dissolved Ca2+ and OH− in a
cement and pozzolan solution.

• Does not take into account materials’ latent
hydraulic properties

• Ca(OH)2 solubility data are determined for
OH- concentrations only ranging from 35 to
90 mmol/L

[7,36–38]

Saturated lime
method

Similar to the Frattini test but a saturated
lime solution is mixed with a pozzolan to

determine amounts of dissolved Ca2+

and OH−

• Does not take into account materials’ latent
hydraulic properties

• The activator to pozzolan ratio is very low
• Variation in the absolute quantity of

Ca(OH)2 in each sample might lead to
errors

[37,39]

Strength activity
index

Relation derived from mortar
compressive strength containing cement

and pozzolan

• It makes no distinction between whether
the strength is derived from filler (inert)
material and physical packing or chemical
reactivity

• It takes a longer time (28–90 days)

[7,37,39]

Bulk resistivity
index test

Relation derived from mortar bulk
resistivity containing cement and

pozzolan

• External conditions such as curing
temperature and sample saturation have a
significant impact on the results, which
must be thoroughly investigated

[40]

R3 test (heat
release and bound

water methods)

A paste prepared from the major
components (SCM and portlandite) with

calcite and sulfate is investigated for
released heat until seven days, and

bound water is assessed for 7-day cured
samples that are heated at 350 ◦C for 2 h

• It is not suitable for slowly reacting
materials having limited reactivity at seven
days

• It is difficult to distinguish between latent
hydraulic and pozzolanic materials

[40,41]

Modified R3 test

The heat release of a KOH solution
containing calcium hydroxide and SCM

is measured until ten days, and
additionally, TGA is performed on the

resulting blends after 240 h

• It is not suitable for slowly reacting
materials having limited reactivity at ten
days

• Should be verified by comparing it to
established techniques for assessing SCM
reactivity

[41]

2. Methods

This section outlines the methodology employed to analyze and predict the DOR of
SCMs. The methodology encompasses two key aspects: Machine Learning prediction and
its application through thermodynamic modeling. The initial phase involves collecting
a comprehensive dataset, which undergoes pre-processing before machine learning pre-
dictions. This pre-processing includes several steps, such as data cleaning, imputation
of missing values, and normalization of numerical features. These steps ensure that the
subsequent machine-learning-based regression analysis is built on a robust and reliable
foundation, optimizing the accuracy and effectiveness of the predictive model. The next
phase involves determining the application of the model using thermodynamic modeling to
estimate phase outputs of Portland cement blended with SCMs, enabling a comprehensive
understanding of the hydration and dissolution processes. Subsequent sections delve into
the specific methodologies and techniques used in greater detail.
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2.1. Data Collection and Machine Learning Algorithm

A set of data was collected having the main inputs as oxide compositions of PC
and SCMs, water-to-cement (w/c) ratio, curing temperature, curing time, surface area,
the proportion of PC and SCMs, and experimental DOR. The DOR of the SCMs was
determined through various experimental methods, including selective dissolution, quanti-
tative X-ray Diffraction (QXRD), Scanning Electron Microscope—Backscattered Electron
Imaging (SEM-BSE), and Nuclear Magnetic Resonance (NMR). For instance, Ben Haha
et al. [25] demonstrated the use of BSE for determining the DOR, whereas Narmluk and
Nawa [42] employed selective dissolution to determine the DOR. The collected data had
254 observations, 20 independent variables, and DOR as a dependent variable. A machine-
learning-based regression analysis was used to predict the DOR. For this research, an
open-source multi-gene genetic programming (MGGP) for data mining and model discov-
ery, also known as GPTIPS, was used [43]. The GPTIPS is a genetic programming (GP)
that is a classical machine learning method inspired by biology [24]. The main feature of
GPTIPS, compared to traditional GP, uses a symbolic multi-gene regression (SMGR) for
data analysis that discovers non-linear correlations between input and output data.

The processes of the data-driven model in the form of symbols can be recapitulated as
follows [44]: GPTIPS initiates with a population of MGGP from randomly generated vector
trees. The fitness of various solutions is evaluated, and then regular tournament selection
is carried out based on a probabilistic Pareto tournament [45]. The regular tournament
develops by repeating mutation and crossover up to a pre-set truncation criterion. When
the analysis results reach the fitness function, it creates symbolic formulas to describe
the overall characteristics of chemical systems. It is worth noting that the GPTIPS deeply
analyzes the user-defined input variables and output, identifies the most influential key
variables, and excludes the redundant input variables [46]. Following the development of
a model to predict the DOR, its accuracy was compared to experimental data, as well as its
relationship to the main inputs such as w/c ratio, curing temperature, curing time, and
oxide composition of the SCMs. The correlations were established by inserting different
values for the main inputs and assessing the resulting variations in DOR. For instance, the
W/C ratio varied from 0.2 to 0.8, and curing time ranged from the 28th day to the 360th day.

2.2. Thermodynamic Modeling

Thermodynamic modeling was used to estimate the phase outputs of PC blended
with the SCMs. The program GEM-Selektor v.3 (http://gems.web.psi.ch/GEMS3/ (ac-
cessed on 1 December 2021)) was used to perform the modeling [47,48]. Cemdata18, the
most recent database, was added to the software’s default database for modeling [49].
The extended Debye-Hückel equation was used to calculate activity coefficients for aque-
ous species. Because it was assumed that KOH dominated the aqueous phase, the com-
mon ion size parameter and short-range interaction parameter used were 3.67 Å and
0.123 kg/mol, respectively [50]. The simulated phase assemblage of PC hydration was
predicted, with incremental substitution of 0–100 wt% of the SCMs. The adapted cement
hydration model [51,52], which was initially developed by Parrot and Killoh (1984) [53],
was used to predict the dissolution rate of PC clinker. The oxide compositions of SCMs
adopted in the DOR predictions shown in Table 2 were averaged from the collected data,
except for the composition of slag, which was taken from a previous article [54]. The
temperature, curing time, and w/c ratios were kept at 20 ◦C, 180 days, and 0.4, respectively,
for all simulations unless stated.

http://gems.web.psi.ch/GEMS3/
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Table 2. Chemical compositions of the raw materials.

Oxides (Mass-%) SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O

PC 20.2 ± 0.12 5.6 ± 0.13 2.4 ± 0.12 65.9 ± 0.14 2.0 ± 0.05 2.6 ± 0.1 0.5 ± 0.04 0.7 ± 0.03
Slag 36.49 12.26 0 41.79 7.48 1.98 0 0

Fly ash 51.8 ± 1.12 23.4 ± 0.48 7.2 ± 0.3 10.8 ± 1.08 2.7 ± 0.22 1.1 ± 0.2 1.3 ± 0.17 1.6 ± 0.13
Metakaolin 54.1 ± 0.4 43.6 ± 0.6 1.1 ± 0.18 0.2 ± 0.03 0.2 ± 0.05 0.1 ± 0.04 0.1 ± 0.02 0.5 ± 0.09
Silica fume 99.3 ± 0.47 0.1 ± 0.05 0 0.1 ± 0.11 0.1 ± 0.09 0 0.1 ± 0.06 0.2 ± 0.15

3. Results

To measure how well the experimental outcomes are replicated by the model, two
fitting criteria were used, which are the coefficient of determination (R2) and the Pearson
correlation coefficient (r) defined in Equations (1) and (2), respectively. The adjusted R2 is
not explained since it gives almost identical results as R2. Figure 1 illustrates a comparison
between the predicted degree of reaction and the experimental degree of reaction for
slag, fly ash, metakaolin, and silica fume. The close alignment observed between the
experimental and predicted degrees of reaction serves to underscore the reliability and
effectiveness of the predictive models utilized in this analysis. The model predicts the
DOR of the supplementary cementitious materials with a minimum accuracy of 83%. The
prediction results show that the model estimates the DOR of silica fume, metakaolin, slag,
and fly ash in decreasing order of accuracy, whereby silica fume and metakaolin DOR are
predicted with very high accuracy, as shown in Table 3.

R2 =

(
∑(Yi − Ym)2 − ∑(Yi − Yp)2

)
∑(Yi − Ym)2 (1)

where Yp is the predicted value of the model, Yi is the ith value, and Ym is the mean value.

r = ∑((Xi − Xm)× (Yi − Ym) )√
∑(Xi − Xm)2 × ∑(Yi − Ym)2

(2)

where Xi and Yi are the ith values and Xm and Ym are the mean values.
The effect of w/c ratio on the DOR of SCMs is shown in Figure 2. A broad range of w/c

ratios were employed to assess their influence on the properties of the cementitious material.
This was undertaken primarily to offer a comprehensive perspective on the behavior of the
material across varying w/c ratios, which is crucial for a thorough understanding of its
performance. The decision to employ a high w/c ratio was based on specific considerations
aimed at simulating conditions relevant to practical applications. In certain real-world
scenarios, particularly in construction projects or concrete formulations, a high w/c ratio
is indeed employed to achieve the desired workability, improve flow, and ensure ease of
placement. This is because a higher w/c ratio makes the concrete more fluid and easier to
deal with, which can be helpful when pouring concrete into intricate molds or navigating
through complex constructions [55]. Moreover, this approach is often favored when time
is a critical factor, as it can expedite the pouring and setting processes, allowing for more
efficient progress on the construction site. Additionally, a high w/c ratio may be necessary
when the SCMs used have very fine particles [56]. For all SCMs, the DOR increases with
increasing w/c ratio, similar to previous studies [57,58], with the main variances arising
from the SCMs replacement content. Although these variations are not directly related to
the w/c ratio, they may be used to compare the DOR with the major inputs included in the
model and are thus described. The DOR of slag constantly decreases when its replacement
is increased. This is due to a decrease in the alkaline activating environment created by
cement hydration [58]. The DOR of fly ash can be clearly described by dividing it into
four zones, the first being a 0–50% replacement of PC, where the DOR falls significantly,
the second replacing from 50 to 60%, where the DOR remains constant, the third from 60
to 95, where the DOR rises slightly, and finally from 95 to 100% where the DOR remains
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constant. The DOR of fly ash initially demonstrates a decreasing trend, potentially due
to factors such as the characteristics of the fly ash, its pozzolanic reactivity, cementitious
system composition, and curing conditions. As the replacement level of fly ash increases,
the available reactive compounds may become saturated, resulting in the observed decrease
in DOR. However, as the replacement level continues to rise, other influencing factors
come into play, such as improved dispersion of fly ash particles and extended reaction time.
These factors can contribute to a subsequent increase in the degree of reaction, countering
the initial decrease observed in DOR. The DOR of metakaolin slightly decreases up to 10%
replacement of PC and then drops significantly up to 80% replacement, and then remains
constant. The DOR of silica fume significantly drops up to 78% replacement of PC, after
which it remains constant.
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Table 3. Model accuracy considering two different fitting criteria.

Fitting Method Coefficient of Determination Pearson Correlation Coefficient

Slag 88.5 94.1
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Metakaolin 93.3 96.6
Silica fume 99.7 99.8
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These trends for fly ash, metakaolin, and silica fume are best described by comparing
the phase assemblage outputs computed using the DOR model since most of the replace-
ment levels are ideal, particularly higher replacement levels, which have not yet been
investigated in previous studies. It has been found that replacing cement with 30% fly ash
results in the consumption of portlandite and ettringite, while promoting the formation
hemicarboaluminate and monocarboaluminate [59], as similar to the simulation results.
The only difference is the formation of monosulfoaluminate in place of hemicarboaluminate
and monocarbolauminate due to sulfate-dominated composition of the fly ash. Addition-
ally, increasing the fly ash replacement from 0 to 50 results in the hydration of cement,
but decreases the reaction extent of fly ash due to portlandite consumption [60], which is
consistent with simulation results. For metakaolin, 40% replacement results in complete
consumption of portlandite, whereby its disappearance is associated with the formation
of straetlingite, and as metakaolin replacement increases from 0 to 20 to 40, the amount
of unreacted metakaolin and aluminum-bearing products increases [61], similar to the
predicted phase assemblage. In the case of silica fume, hydrated cement without silica fume
tends to consume ettringite and convert it to monosulfate, but 10% silica fume substitution
can result in stabilizing ettringite at later ages [62], and Uzbas and Aydin showed that
portlandite consumption increases as the amount of silica fume replacement increases from
0% to 20%, for 0%, 5%, 10%, 15%, and 20% replacements [63] both scenarios supported by
the thermodynamic simulation.

The effect of the curing time on the DOR of SCMs is shown in Figure 3. For all SCMs,
the DOR increases with increasing curing time, as reported by previous studies [59,62,64,65].
The variations are caused by SCMs replacement content, as previously stated, and are
analogous to the variances discussed in the effect of w/c ratio on the DOR section.
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The effect of the chemical composition of SCMs on the DOR is shown in Figure 4. The
chemistry of the SCMs was characterized by their major oxide percentage compositions,
which are Ca-Si-Al for slag, Si-Al for fly ash and metakaolin, and Si for silica fume [10]. For
all slag replacement ratios, maximum DOR is attained when the wt% composition of the
three major oxides is nearly equivalent. As the amount of slag replacement increases, the
CaO tends to be surplus, and the system (PC + Slag) starts to intake higher amounts of
SiO2 and Al2O3 to increase DOR. This is due to the excess Ca(OH)2 from cement hydration,
which can combine with the silica and aluminate of slag to form calcium silicate hydrate
(C-S-H) and calcium aluminate hydrate (C-A-H) [66,67].

The effect of the SiO2/Al2O3 ratio of fly ash and metakaolin on the DOR is shown in
Figure 5. The SiO2/Al2O3 ratio in fly ash affects the DOR differently depending on the
replacement percentage; for example, increasing the silica to alumina ratio lowers the DOR
at 10% replacement, nearly has no effect at 30% replacement, and rises at 50% and 70%
replacements, respectively. The DOR of metakaolin is highly dependent on the amount of
Al2O3 content. For all metakaolin replacement levels, the DOR increases with increasing
aluminate content. Additionally, the rate of change of DOR becomes more stable due to
changes in the SiO2/Al2O3 ratio as the amount of metakaolin replacement increases. This
can be supported by the fact that the optimum content for replacing PC with metakaolin
ranges from 10–30% [64,68], with further substitution resulting in the creation of excess
inert material. Therefore, for higher replacement levels, changes in metakaolin oxide
composition have little effect on the DOR. However, it is essential to emphasize that the
SiO2/Al2O3 ratio variations are contingent upon the specific cementitious composition. For
instance, Juengsuwattananon et al. [69] observed that the DOR increases to a SiO2/Al2O3
ratio of up to 4 in geopolymer compositions containing metakaolin and rice husk ash. Yet,
further increment results in reduced DOR. In another study, Duxson et al. [70] found that



Sustainability 2023, 15, 15471 10 of 17

in geopolymer formulations comprising metakaolin and an alkaline silicate solution, the
DOR tends to increase up to a SiO2/Al2O3 ratio of 1.9, but samples with a SiO2/Al2O3
ratio of 2.15 displayed lower levels of DOR.
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The effect of SiO2 content in silica fume on the DOR is shown in Figure 6. According
to ASTM C 1240 [71], the minimum SiO2 content for silica fume must be 85%. Additionally,
the average SiO2 content of the collected silica fume samples is greater than 95%; hence, the
DOR variation was checked for SiO2 content ranging from 90 to 100%. The result indicates
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the DOR of silica fume remains constant due to changes in SiO2 content in the specified
range. The same observations were reported previously [72].
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These correlations, in addition to the noted proximity of the prediction of the model
to experimental data, can support the accuracy of the model by aligning with findings
from previous studies. This underscores consistent trends in DOR concerning various
input parameters and, in turn, reinforces the reliability and applicability of the model.
Moreover, comparisons between the predicted DOR trends and phase assemblage outputs
further validate the model, especially in scenarios where replacement levels have not
been thoroughly investigated in previous studies. The insights gained from this model
significantly contribute to understanding how diverse input parameters influence the DOR
of SCMs, further establishing the suitability of the model.

4. Predicted Phase Assemblages
4.1. PC–Slag

The thermodynamic modeling results of PC blended with slag is shown in Figure 7a.
The initial phases of PC–slag (100% PC) are hydrogarnet, C-(A)-S-H, ettringite, monosulfate,
and portlandite. As the level of slag replacement increases, the volumes of unreacted PC and
hydrogarnet decrease while the volume of unreacted slag and hydrotalcite increases. The
volume of C-(A)-S-H slightly increases up to 80% slag replacement. After this point, there
is a slight decrease in the volume of C-(A)-S-H, while more ettringite is expected to form.
This slag replacement level also coincides with the complete consumption of portlandite.
Monosulfate remains constant for the majority of slag replacement, while it is not a stable
phase at >88% slag. The volume of total hydrates formed generally reduces as the slag
replacement increases. Lothenbach et al. [73] performed thermodynamic calculations for
PC–slag systems, assuming full hydration of PC and 75% DOR of the slag, which almost
yielded equivalent results except for the formation of Fe-hydrogarnet, which was not
considered due to its slow kinetics of formation, and the formation of monosulfate in place
of monocarbonate, due to the higher sulfate content in the slag used in the simulation. On
the other hand, a similar result is reported in a study by Park et al. [74].
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4.2. PC–Fly Ash

The thermodynamic modeling results of PC blended with fly ash are shown in
Figure 7b. As the level of fly ash replacement increases, unreacted PC, unreacted fly
ash, and hydrotalcite follow the same trends as PC–slag systems, except for hydrogarnet,
which remains constant and exhibits greater volumes due to the higher ferrite content of
fly ash compared to slag. The volume of C-(A)-S-H slightly increases up to 45% fly ash
replacement. Following this point, the volume of C-(A)-S-H decreases slightly, while more
straetlingite, Al(OH)3, and amorphous silica are expected to form. This fly ash replacement
level also coincides with the complete consumption of portlandite but with a faster rate of
destabilization compared to slag. This is supported by the presence of additional aluminate
in fly ash, which leads to a pozzolanic reaction whereby portlandite reacts with aluminate
to form additional C-A-H [75]. A higher concentration of SiO2 and Al2O3 also resulted in
the formation of Al(OH)3 and amorphous silica. The volume of monosulfate increases until
it is completely degraded into ettringite, which eventually degrades to form gypsum. The
volume of hydrotalcite slightly increases until it is destabilized into M-S-H, however, these
phases are found in smaller volumes indicating lower magnesia content of fly ash. The
volume of total hydrates formed generally reduces as fly ash replacement increases. The
main difference between this research and prior works [73,76] is the formation of M-S-H,
amorphous silica, and higher volumes of Al(OH)3, which is due to excess SiO2 and Al2O3
in the system. This point is further supported by the significant drop in DOR of fly ash as
the replacement of PC with fly ash increases.

4.3. PC–Metakaolin

The thermodynamic modeling results of PC blended with metakaolin are shown in
Figure 7c. Unreacted PC, unreacted metakaolin, and hydrogarnet follow the same trends
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as PC–slag systems when the quantity of metakaolin replacement increases. The volume of
C-(A)-S-H increases up to 23% metakaolin replacement. This metakaolin replacement level
also coincides with the complete consumption of portlandite. Portlandite is consumed faster
than both PC–slag and PC–fly ash systems [37]. From this point up to 60% MK replacement,
C-(A)-S-H begins to deteriorate and then increases, primarily to accommodate the formation
of straetlingite, after which it gradually degrades into Al(OH)3 and amorphous silica.
Straetlingite is formed from the decomposition of C-(A)-S-H and monosulfate [77]. The
formation of straetlingite is associated with an increase in the volume of total hydrates
formed, which is also true for slag and fly ash replacements, albeit in smaller amounts.
The volume of monosulfate increases until it is completely degraded into ettringite, which
eventually degrades to form gypsum. Due to the extra SiO2 and Al2O3 oxide composition
of metakaolin, the volumes of straetlingite, Al(OH)3, and amorphous silica are greater than
in PC–slag and PC–fly ash systems. The volume of total hydrates formed reduced in the
same manner as it did in the PC–slag and PC–fly ash systems.

4.4. PC–Silica Fume

The thermodynamic modeling results of PC blended with silica fume is shown in
Figure 7d. Silica fume is mainly composed of SiO2. As the level of silica fume replacement
increases, unreacted PC, unreacted silica fume, and hydrogarnet follow the same trends
as in PC–metakaolin systems. The volume of C-(A)-S-H increases up to 45% silica fume
replacement. After this point, the volume of C-(A)-S-H declines, while amorphous silica
starts to form. This silica fume replacement level also coincides with the complete con-
sumption of portlandite. Portlandite is consumed faster than both PC–slag and PC–fly
ash systems but in a nearly equal amount to the PC–Metakaolin system. The volume of
monosulfate decreases until it is completely degraded into ettringite, which eventually
degrades to form gypsum. Despite being relatively small, the volume of total hydrates
formed reduced as silica fume replacement increased, as it did with the other SCMs [73].

5. Conclusions

This study proposed a means of determining the DOR of SCMs in hydrated Portland
cement by adapting a machine learning algorithm. The following conclusions were drawn
from the obtained results:

• The model exhibited satisfactory performance for predicting the DOR of SCMs, achiev-
ing an average accuracy of 89% and a minimum accuracy of 83%. These findings
establish a solid foundation for predicting DOR and analyzing diverse DOR-related
relationships in SCMs, encompassing different known or unknown properties, partic-
ularly in the case of new materials.

• For all SCMs, the DOR increases with increasing w/c ratios and curing time and
decreases with replacement ratios.

• The DOR of SCMs is predicted to exhibit significant changes based on oxide composi-
tion. For instance, slag with higher Al2O3 content is expected to show higher levels of
DOR, while the DOR of metakaolin show less extent of change despite the variations
in the Si/Al ratio of metakaolin.

• The proposed model will be highly useful for simulating phase assemblages of SCM-
blended PC, as it provides a reasonable basis for predicting the DOR of SCMs covering
numerous parameters related to material properties and curing conditions when no
experimental data are available.
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